
Chapter 1 

Introduction



Book Overview

n Introduction (this presentation)
n R Preliminaries (in appendix)
n Quantitative finance tools
n Instrument valuation
n Static risk management
n Dynamic market risk management

8/26/20 2© Financial Risk Management, LLC



Introduction to Introduction
n Purpose: Not to provide state-of-the-art R 
programming techniques (provide selected)
n Purpose: Not to provide state-of-the-art 
quantitative finance techniques (provide 
selected)
n Purpose: Provide as simple an approach as 
possible to learn prototype implementation code
n Facilitate implementation of quantitative 
finance ideas in R

8/26/20 3© Financial Risk Management, LLC



Case for Computer Language
n Conformist versus non-conformist
n Clear and crisp understanding of model
n Build versus buy
n Computer language (CL) or spreadsheets
n CL or symbolic languages
n Improved communication with internal 
software developers
n More efficient debugging
n Decomposition

8/26/20 4© Financial Risk Management, LLC



Conformist vs. Non-Conformist

nUnique language
nMethods of expression

n Client presentations
n Valuation methodologies
n Data collected

nR expands means of expression
n Improved software tools speeds the process

8/26/20 5© Financial Risk Management, LLC



Clear / Crisp Understanding

nComputer program – 99% correct is 100% wrong
n30,000 foot perspective of financial models
nPlain vanilla interest rate swap

n Quarterly, ACT/360 FLT; Semi, 30/360 FIX
n Payment frequency and day count have significant 

value

8/26/20 6© Financial Risk Management, LLC



Build Versus Buy
nBuild

n Takes time and energy, risk errors but …
n Fully understood by someone within firm
n Easy to modify as conditions change (social science)

nBuy
n Pay immodest fee, someone else liable, fast but …
n No one internal understands model nuances
n Black box (only know inputs and interpretation of 

outputs)

8/26/20 7© Financial Risk Management, LLC



Spreadsheets

nAnalysis only compliant with spreadsheet 
framework (all other solutions not considered)
nLarge, complex problems difficult in spreadsheets
nSlow and cumbersome
nCL: Decompose large, complex problems
nCL: Fast and flexible

8/26/20 8© Financial Risk Management, LLC



Symbolic Languages

nNot portable
nRely on existence of symbolic language provider
nCL: very portable
nCL: rely only on existence of language, not 
specific compiler

8/26/20 9© Financial Risk Management, LLC



Improved Communication

n Internal software developers do not understand 
finance language
nAdvanced quantitative finance applications often 
are fraught with nuances (social science)
nFinancial analyst can better communicate with 
internal software developers if understand 
computer language

8/26/20 10© Financial Risk Management, LLC



More efficient debugging

nQuantitative finance models are complex (speed, 
real time data, multidimensional, advanced math)
n“Bugs” are rampant
nFinancial analyst is well-suited to efficiently 
debug

8/26/20 11© Financial Risk Management, LLC



Decomposition

nBreaking down problem into smaller manageable 
pieces
nOne goal here is to help you develop skills to 
achieve optimal level of decomposition

8/26/20 12© Financial Risk Management, LLC



Why Learn the R Language?
n Jobs
n History of computer programming languages

n Low level language: machine level code, powerful
n High level language: easy to use
n mid-1950: FORTRAN (formula translation), high level 

language
n C++: combines high level (easy to use) and low level 

(powerful), fast, object-oriented
n R: Easy and can link with C++

n Rapid application development

8/26/20 13© Financial Risk Management, LLC



Learning R

nAutonomous versus heteronomous
n Autonomous: Freedom to act independently, 

training materials are compiler independent
n Heteronomous: Subject to external standard, 

training materials specific to one compiler
nDeliverables: Simple prototype programs

n Actual implementation requires exhaustive error-
trapping, real time data

n Goal: Deployable code
8/26/20 14© Financial Risk Management, LLC



Summary

nCase for learning computer language
nWhy R rather than spreadsheets or symbolic 
languages
nLearning R improves communication, more 
efficient debugging, decomposition, and jobs

8/26/20 15© Financial Risk Management, LLC



Appendix: Building a Repository

nManaging subdirectories for source code
n C:\QFRepository

nManaging files
n Modular development
n Each module independent

8/26/20 16© Financial Risk Management, LLC



Appendix: Coding Preferences
1) Indent two spaces (even for wrapped lines) 

after each curly bracket ({), method and class 
curly brackets place on separate line, all 
others open ({) on same line and close (}) on 
new line 

2) Use blank lines very rarely. If you need a 
space, include a comment line 

3) Your name should be on the first line of each 
file

8/26/20 17© Financial Risk Management, LLC



Coding Preferences Continued

4) R function code should be separated from 
other code 

5) Naming conventions adopted here
a. Names of variables: lower case or both upper 

and lower case, err on longer name
b. Names of functions: begin with upper case for 

each word

8/26/20 18© Financial Risk Management, LLC


