Module 8.3: SRM GBM-Based Option Models

Learning objectives
e Explore measurement error between the binomial and closed-form model
e Explain how to compute Greeks based on the geometric Brownian motion option models
e Contrast no dividends and dividends with respect to Greek sensitivities
e Provide detailed graphical analysis of European-style and American-style options

Executive summary

Based on the notation presented in Module 5.4, we illustrate computing option Greeks within the geometric
Brownian motion option valuation model (GBMOVM) for European-style options. We further explore
differences between the Greeks based on the binomial option valuation model.

Central finance concepts

Based on materials covered in Modules 8.1 and 8.2, we assume a familiarity with the option Greeks. In this
section, we will review various graphical insights related to GBMOVM and related Greeks. In the
quantitative finance materials section below, we will present the mathematical details as well as several
extensions.

GBMOVM Greeks

We now present graphical results based on the R code provided for the Greeks as calculated by the
GBMOVM. Specifically, we explore delta, gamma, vega, theta, and rho. Recall delta measures an option
value's sensitivity to changes in the underlying instrument’s price. Gamma measures the delta’s sensitivity to
changes in the underlying instrument’s price. Vega measures an option price’s sensitivity to changes in the
underlying asset's volatility. Theta measures an option price's sensitivity to changes in the time to maturity.
Rho measures an option price's sensitivity to changes in the interest rate.

Measurement error with GBM binomial option valuation model

Our focus here is comparing the American-style option Greeks from the binomial option valuation model
using the enhanced method and the GBMOVM. Before working our way through the Greeks, we first
illustrate measurement error when comparing the binomial approach to European-style option value and the
GBMOVM.

Figure 8.3.1 illustrates this error from three perspectives. Note throughout all graphs, ES denotes
European-style and AS denotes American-style. In almost all cases, the call and put errors are
indistinguishable. Panel A highlights the difference with respect to moneyness. The error in this case is
almost always less than $0.01. Panel B highlights the difference with respect to volatility with same
boundaries but with a clear cyclical pattern. Panel C highlights the difference with respect to time to
maturity. With longer time to maturity, the error declines.

Figure 8.3.1. Measurement error between binomial and GBMOVM
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Panel B. Error with respect to volatility
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Figure 8.3.2 illustrates delta from several perspectives both without and with dividends (5%). Panel A just
illustrates the relationship between the option values and the stock prices. Notice that when the interest rate
equals the dividend yield the call and put equal each other at-the-money. The slopes of the lines in Panel A is
delta as illustrated in Panel B. Panel B illustrates the influence of the early exercise feature on the delta for
the American-style options. Panel C and D show the influence of volatility and time to maturity.

Figure 8.3.2. Call and put deltas based on GBMOVM with and without dividends

Panel A. Option value with respect to stock price
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Panel B. Delta with respect to stock price
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Panel C. Delta with respect to volatility
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Panel D. Delta with respect to time to maturity
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Gamma

Figure 8.3.3 highlights the role of gamma. The lognormal distribution assumption is clear in Panel A except
when the early exercise feature impacts option gammas. Panels B and C show that the gamma increases with
declining volatility and with declining time to maturity.

Figure 8.3.3. Call and put gamma based on GBMOVM with and without dividends
Panel A. Gamma with respect to stock price
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Panel B. Gamma with respect to volatility
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Panel C. Gamma with respect to time to maturity
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Figure 8.3.4 highlights the role of thetas. Panel A documents the well-known time value decay—option
values decline with the mere passage of time. Panel B shows that the theta has a non-monotonic relationship
with the stock price. At-the-money options have the highest time value; hence, they have the most negative
time value decay or theta. Panel C shows that theta generally declines with higher volatility. Panel D shows
that theta generally increases with time to maturity.

Figure 8.3.4. Call and put thetas based on GBMOVM with and without dividends
Panel A. Option value with respect to time to maturity
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Panel B. Theta with respect to stock price
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Vega

Recall vega is the first derivative of the option value with respect to volatility. Neither the stock nor the risk-
free interest rate is assumed to be influenced by changes in the stock's volatility. Volatility impacts both calls
and puts the same.

For call options that are deep out-of-the-money, the call price changes very little with a small change in
volatility (it does not really change the probability of the stock reaching the strike price), hence the vega is
close to zero. The same is true for deep out-of-the-money puts. For small changes in the volatility for deep
in-the-money calls, the call price does not change much because it is already in-the-money, hence again the
vega is close to zero.

Figure 8.3.5 highlights the role of vega. Panel A shows that the option values are increasing with respect
to volatility. Panel B shows that the vega reflects the lognormal distribution. Panel C shows that vega has a
complex relationship with volatility. Panel D shows that vega generally increases with time to maturity.

5
© 2023 Robert Brooks. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.



Figure 8.3.5. Call and Put Vegas Based on GBMOVM With and Without Dividends
Panel A. Option Value with Respect to Volatility
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Rho

Figure 8.3.6 highlights the role of rho. Panel A shows that the rho generally increases with the stock price,
except for American-style puts. Panel B shows that rho generally declines with volatility. Panel C shows that
rho generally increases with time to maturity for calls and decreases for puts.
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Figure 8.3.6. Call and Put Rhos based on GBMOVM With and Without Dividends
Panel A. Rho with Respect to Stock Price
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Quantitative finance materials
We now examine the technical details of GBMOVM Greeks. But first, we review the GBMOVM.

GBM option valuation model (GBMOVM)

Recall based on a set of restrictive assumptions, the GBMOVM can be expressed as
o(S,.t:4,,X,T,r,06)=1,8,B,N(1,d,) -1, XB.N (1,,d, ) (8.3.1)
where again the indicator functions is expressed as

. +1 if underlying call option ’ (8.3.2)

—1 if underlying put option
B=e¢", B =¢?" (8.3.3)
—x2/2
N (d ) = J.d € __ dx, (area under the standard cumulative normal distribution up to d)  (8.3.4)

NEYS
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1n(S°J+[r—5+O-2J(T—t)

X 2

d = , and (8.3.5)
GJT—t

d,=d—-o\T-t. (8.3.6)

If there is only a cash flow yield, then the call and put option equations can be expressed as

¢, =S, "IN (d,)~ Xe "IN (d,) and (8.3.7)
py=Xe "IN (=d,)~S,e TIN(~d,). (8.3.8)
Note that where convenient, we assume ¢ = 0.

GBMOVM Greeks
We now cover the mathematical details related to Greeks as calculated by the GBMOVM.
Delta
Mathematically, delta is defined as
20

AOEB_S:lUB(SN(lUdl)' (839)
Sketch of proof: We cover a few preliminary concepts before providing a sketch of the derivation of delta.
Based on put-call parity (¢ = Se™" — Xe T + p), weknow A = T+ A, Also, note from the definitions of

di and d,, we can express them as
2

N o’ o
N ln(XJ+(r—5+2JT_ ln(S)+—1n(X)+[r—5+2JT » 8310
B o1 oVr ’ B

oNT
(S)+—ln(X)+(r—5+O;)T_o-ﬁ.

In
d=d—o\T = (8.3.11)
2 oNT O'\/?
Therefore,
% = % = ! . (Derivatives of d’s relation) (8.3.12)
9S  9S  So\T
x=d —xZ/Z
From the definition of the standard normal cumulative distribution function ( & (d) = j f/_ dx), we have
N2
N (d ) e - . .
— = n(d ) = . (Standard normal probability density function) (8.3.13)
od 27
Xe"Tn(d ) Se_‘srn(d)
Lemma proof: Rearranging, we have
~d3 /2
e
~oT d 2_ g2
Se” _ ”( 2)_ V2r _e(d, a&)f2 (8.3.14)

Xe T n(dl) - e—df/z =

NGy

Focusing on the exponent,
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d; —d; 1[ (d o\/_)} [ d12+2d16\/?—62T}

2
=d oﬁ—“zT . (8.3.15)

(S Jefr-oe g ) o7 -ZL 0 efe-opr

- oNT X

Therefore,

2_ 52 In| Bl +Hr—6)T -oT
o) _ o _ se . (8.3.16)
C Xe "
With this background information, we are now ready to sketch the call delta proof. Based on fundamental

calculus rules and the Black, Scholes, Merton call formula, we have

oN(d oN(d
g _ e 'N(d,)+Se" —< ) - Xe T —( 3)
oS oS oS (8.3.17)
IN(d,)dd L ON(d,)ad, -
:e—ﬁTN(d ) +Se J ( ) Xe ( )
ad, ES dd, s
From the derivatives of d’s relation and the standard normal probability density function, we have
dc -8 -5 T 1
—=¢ " N(d, |+ Se - Xe " nld,)——. (8.3.18)
dS ( 1) ( ) So \/_ ( ) So \/?
Finally, based on the lemma above, we have demonstrated that
dc -8T
—=A =¢”N(d ). 8.3.19
== 5219

and based on put-call parity, we have (recall N (—dl) =1-N (d1) due to the symmetry of the standard normal
distribution)
A=A -e = N(d)-eT =" [N(d)-1]=-¢"N(-d,). (8.3.20)

The value of the European call option at expiration is either $0 if it is out-of-the-money (S7 < X) or the
intrinsic value (the dollar amount it is in-the-money, Sr— X) when the stock ends up in-the-money (Sr > X).
Prior to expiration, the option has time value as well as intrinsic value. The time value of an option depends
on the relationship between the current stock price and the strike price.

Delta-neutral portfolio

A delta-neutral portfolio is a portfolio that has a portfolio delta of zero. A zero delta implies that the value of
the portfolio does not change for infinitesimal changes in the stock price. Hence, the value of the portfolio is

not affected by small changes in the stock price. Therefore, to hedge against small changes in the stock price,
trades should be conducted such that the portfolio delta is zero.

We can create a synthetic call using bonds and the underlying asset. It can be demonstrated that a
portfolio of /7=—c + SN(d)) is riskless because N(d)) is the delta. Hence the portfolio, /7, should grow at the
risk-free interest rate. Rearranging this relationship, we have ¢ = SN(d;) — /7which is the Black-Scholes
formula with /7= Xe ""N(d,). Thus, a call option can be created synthetically using the underlying asset
(buying N(d,) shares) and partially financing it with borrowing of /7= Xe " "N(d).

The delta-neutral portfolio and portfolio insurance: Recall that portfolio insurance can be represented as
long a stock and long a put or

S+p=S8+Xe"N(-d>) + S( A)=S1+A)+ Xe " "N(—ds)

9
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(by substituting the Black-Scholes-Merton formula and the definition of A). Hence, portfolio insurance is
related to the concept of a delta neutral portfolio with additional exposure in stock. Recall that Ap <0 and
A=1+A.

¢ P

Gamma
Mathematically, gamma is defined as

B 9’0 e"srn(dl)

= = ) 8.3.21
°7 098" SoNT ( .
Sketch of proof: Recall based on put-call parity A=A - ¢ %" and therefore we know
A
A, _9A, (8.3.22)
S dS§
From the definition of call delta,
d’c _0A, _ 8N(dl) —o7 aN(dl) dd, e_qT”(dl) (8.3.23)
_—= =e =e — = . I
as?  as N ad, S  So\T
Theta
Mathematically, theta is defined as
Se"n(d )o
g =90_ 90 __ (4) —1,7Xe "N (1, d, ) +1,65¢°"N(1,d,). (8.3.24)

ST T

Sketch of proof: Theta is defined as the change in the option value for a given change in calendar time,
measured in years. As calendar time passes, the time to maturity declines. Therefore, there exist a negative
relationship between calendar time and time to maturity. We derive results for time to maturity and then at
the end switch the sign. Time to maturity appears in a variety of places in the option valuation formulas.
Therefore, this proof is rather tedious. Consider the following preliminaries:

9 __ (8.3.25)
oT ’
ag;f —_5¢°, and (8.3.26)
od, _9d, o™ (8.3.27)
oT 9T 2
Therefore,
E_ a€_§T _5T a]\'](dl) ae—rT —rT aN(dz)
7 =50 N(d,)+Se X N(d,)- Xe or
. 51 INd,)dd . . ON(d,)ad
=-5Se "' N(d,)+Se ”a—c(lll)a—leXe "N(d,)- Xe Ta%;)a_f' (8.3.28)
) ) ad d
=—-0Se 5TN<dl)+rXe TN(d2)+Se STn(d])a—T‘— Xe Tn(dz)a—T2
_ —oT
Based on % _ %_ GT2 /2 and the lemma above ( n(dz) _ SeT’i(le)), we have
p) ) B . od S n(d) [ dd  oT "
a—;:—5Se ‘STN(dl)+rXe TN(d2)+Se ‘sTn(dl)a—T'—Xe T[T(Tl)][d_ll_a—} 5320)

Se_‘ng(d] )6

NT

= —5Se_6TN(dl)+ rXe"TN(d2)+
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Recall the sign change related to how time is measured, we have

—qT
_JC_ aC_ _M_,,Xe—rTN(dz)+qSe-qTN(dl), (8.3.30)

0 =
¢ ot oT WT

From put-call parity, we have

gi g; +8SeT —rXe . (8.3.31)
Substituting for call results above,
Se*"n(d )o
g—’T’ =-5Se”"N(d,)+rXe " N(d,)+ \/(, ) +88e" —rXe™"
2 , (8.3.32)

Se” ‘STn(dl)G

T

=—5Se " N(~d,)+rXe " N(-d, )+

because of the normal distribution symmetry. Thus,

_adp p Se_‘srn(d )O‘ » B
9, D TR R +rXe"N(~d,)- 85" N(~d,). (8.3.33)
Vega
Mathematically, vega is defined as
v, = g—g =S¢ n(d, WT = Xe " n(d,NT (8.3.34)

Sketch of proof: From put-call parity ( C = Se™®” — Xe ™" + P), we know gc gp Note
o (o)

dc _ o wON() ., 0N(d)
do =5 oo e Jdo
e arIN(d) 04, ,IN(d,) ad,
=Se™® 3 o - Xe™’ 2, e (8.3.35)
_ ad, . ad
= Se 6Tn(dl) - Xe"'n (dz)a—of
From the lemma above, we know
Se™"n(d
n(d2)=7(r'). (8.3.36)
Thus,
;)_c = SeaTn(dl)% - Xe" {_Se;T’i(le ) }?
o o ¢ c , (8.3.37)
. od, dd _ »
_se ”n(dl){a—al—a—;} 5 n(d T = Xe  n(d NT
—rT
because % = % - \/; and by rearranging the lemma result as "(dl) = XeTna(sz)‘
Rho
Mathematically, rho is defined as
P, _a_o_l XTe"" N(1,d,). (8.3.38)

or
Sketch of proof: From the definition of d», we know
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dd, dd

—2=—1, 8.3.39
or or ( )
and put call parity
oc o Op
—=rXe" +—. 8.3.40
or e or ( )
From the call option formula,
dc -8T aN(dl) de”” - aN(dz)
—=3S -X N(d,)-Xe" ——=
or ¢ or or ( 2) ¢ or
IN(d,) ad IN(d,)ad
=S — L —LiXe""N(d,)- Xe " —2—2. 8.3.41
dd, or ( 2) ad, or ( )
» B ad . ad
=rXe TN(d2)+ Se ‘Srn(dl)a—rl— Xe Tn(dz)a—rz
Se™*"n(d
Based on % = % and the lemma above ( n(d ) = L(l)), we have
roor : Xe "
dc B . od | Sen(d,) |ad .
o7 = XN (d, )+ se " n(d ) =L - X [TT] ==X IN(d). (83.42)
Substituting this result into the put-call parity expression above,
ap ac —r — —r —r
S =5, e "=rXe"N(d,)-rXe" =—rXe""N(-d,). (8.3.43)

We now turn to exploring other selected insights based on SRMs.

Selected other insights based on Greeks

We now examine a few other aspects related to the GBMOVM. Specifically, we explore the sensitivity of the
Greeks to dividend yield as well as a few extended Greeks. Finally, we explore the use of selected Greeks to
estimate option price changes.

Sensitivity to dividend yield

Figure 8.3.7 provides several graphs related to dividend yield. The dividend yield on the horizontal axis and
the option prices or Greeks are on the vertical axis. For option values, the negative sloped line is the call and
the positive sloped line is the put. Note that when the interest rate equals the dividend yield, the value of the
call equals the value of the put. Each Greek is sensitive to dividend yield.
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Extended Greeks

One way to categorize static risk measures, such as delta and gamma, is based on the derivative order. The
option valuation model can be represented as a function of underlying parameters of underlying instrument
value (S), time to maturity (T), volatility (o), risk-free rate (1), strike price (X), and dividend yield (d).
0= f(8.T;0,r,X.,5)
First order risk measures include:
e Delta (S)
Theta (t)
Vega (o)
Rho (1)
X)
(®)
Second order risk measures include:
e Gamma (S,S), (S,t), (S,0), (S,r), (S,X), (S,d)
(t,9), (t.t), (t,0), (t,r), (t,X), (1,0)
(0,S), (o,t), Vanna (o,0), (o,r), (6,X), (6,0)
(1,9), (1,1), (r,0), (r,r), (r,X), (1,0)
(X,9), (X,t), (X,0), (X,1), (X,X), (X,5)
(8,9), (8.t), (8,0), (3,r), (8,X), (3,0)

Higher order risk measures are also feasible.

Estimating option price changes

Based on delta and gamma along with the Taylor series approximation, we can estimate the dollar price
change in the option for a given change in the underlying stock. We first briefly review the univariate Taylor
series approximation.

Theorem: Univariate Taylor Series

Assume a continuous function f (x), where —co < x < o0 and —oco < f (x) < oo. Also assume at f (xo) has

derivatives of all orders. Then the Taylor series of f about the number X, can be expressed as
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f(x)= ZL(XO)(X_XO)’} (8.3.44)

i=0 1 '

The n"" Taylor polynomial p of f about x is

p,(x)= 1 (%) + (%, ) (x=x,)+ (x=x,) +---+M(x—xo)n. (8.3.45)

2! n!
The n" Taylor remainder r of f about x, is
r(x)=f(x)-p,(x). (8.3.46)
It can be shown than
f(nﬂ)(xz) n+l
rﬂ(x)=m(x—xo) 5 (8347)

for some x, <x_ <x.!

We apply this theorem to improved estimates of changes in option prices for given changes in the
underlying instrument’s value.
Example I: Long call option estimated with delta only

The 1% order Taylor polynomial O, (S) of § about § is

0,(5)=0(s,)+0'(5,)(S -5, )- (8.3.48)
From the definition of delta
A, =0'(S,)= &3—(:) =16 " N(1,d,). (8.3.49)
s=5,
We have with some rearranging and substitutions,
d0,=0,(S,+AS)-0(S,)=A, (AS). (8.3.50)
Note in the limit and based on the BSMOVM GBM assumption (no dividends),
dS = uSdt+0oSdz . (8.3.51)

Thus, the change in the option can be roughly estimated as
dO, = A uSdt+A oSdz

Figure 8.3.8 illustrates the delta approximation of the change in the option price for a given change in the
underlying instrument. We assume the base case is a non-dividend paying stock with an initial stock price of
$100, strike price of $100, risk-free interest rate of 5%, volatility of 30%, and time to expiration of 1 year.
The call price, according to the GBMOVM is $14.23.

' The univariate Taylor series can be found in just about any calculus book. See, for example, Ellis and
Gulick [1982], 477.
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Figure 8.3.8. Delta Approximation of the GBMOVM
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Clearly, based on Figure 8.3.8, we need a more precise estimate. Note that for a sufficiently large change in

the underlying instrument value, we would estimate a change in the option price when compared to its

original value, a very counterintuitive result. We now examine applying second order Taylor series.
Example 2: Long call option with delta and gamma

The 2™ Taylor polynomial Oz(S) of s about § is

(s-5,) (8.3.52)

0,(s)=0(s,)+0'(s,)(s-5,)+
From the definition of delta as before and gamma

_JO(S) en(d))

r =0"(S,)= =—=", (8.3.53)
A o -
where
d2
(d) ¢’ (8.3.54)
n(d)= . 3.
N2z
We have with some rearranging and substitutions,
r
d0, = 0,(S,+AS)-0(S,)=A, (AS)+ 2"(AS)2. (8.3.55)
Again, based on the BSMOVM and GBM framework, the change in the option can be roughly estimated as
r
dO, = A (uSdt+0Sdz)+—=(uSd + 0 Sdz)
2 . (8.3.56)
r
= A uSdt+ A, Sdz + 70( @S’ + 2008 ddz + 0° Sz’
Note that in the limit, based on well-known properties of Brownian motion,
dr* =0, (8.3.57)
dtdz =0, and (8.3.58)
dz* =dt. (8.3.59)

Thus, in the limit, we know
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r
do = [Aous+70ozsszt+ A, 0Sdz . (8.3.60)

As illustrated in Figure 8.3.9 below, the delta-gamma estimate is an improvement, but we could use an even
more precise estimate for larger changes. Again, for a sufficiently large change in the underlying instrument
value, we would estimate a change in the option price more than its original value, a very counterintuitive
result. To improve our Taylor series estimation process as well as better understand the GBMOVM, we
consider a multivariate Taylor series expansion.

Figure 8.3.9. Delta and Gamma Approximations of GBMOVM
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For the next approximation, we need the multivariate version of Taylor series.
Theorem: Multivariate Taylor Series’

Assume a continuous function f’ ( X ), where X ( X5 Xy5een xn) is a vector with 7 elements, and

—00 < X; <0, =1,...,n. Also assume at f(XO) has derivatives of all orders. Let D, = a/axi be the
operators of partial differentiation where
Df=df/ox,. (8.3.61)

and

D'f=9"f/ox", (8.3.62)
and in the multidimensional case

o' f

ox, Ox, ...0x, ’

where the required partial derivatives are assumed to exist. Then the Taylor series of f about the point X is

DD,..D, f=

o {i x./_x.?)Dj}l
/(X)=2 1(x°). (8.3.63)

The k™ degree Taylor polynomial of 7 variables p,, of fabout X % is

% See, for example, Aramanovich, et. al. [1965].
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i [i(xj_x.?)Dj}l
P (X)=2 £(x°). (8.3.64)

|
i=0 1
The kth laylor remainder I”k of f about X 0 is

n(X)= (%)=, (X)

It can be shown than

n

r(X)= [Z(X( ,:I;,D}

7(x°),

nk

forsome X°< X< X.
We now consider the case where the size of the vector X is n =2. Assume a continuous function

f(xl,xz), where —oo < x,,x, <o and —oo < f(xl,xz) < o0, Also assume at f(xlo,x;)) has derivatives of

all orders. Then the Taylor series of /" about the numbers xf, xg is

1 J 3]
f(x],xz) = ;;[(xl —xlo)$+(x2 —x;))@} f(xlo,xg). (8.3.65)
Therefore, the 2™ Taylor polynomial D, (xl,xz) of f about xlo and xlo is

M(xl_xo)+w

D, (xl,xz) = f(xlo,xg)+ ox, (x2 - x;))

ox, :
. (8.3.66)
lafz(xojxo) , 1af2(x0,x0) , afz(xo,xo)
+3#(xl —xlo) +5#(x2 —xg) +T1X;(xl —xlo)(x2 —xg)
Example 3: Long call option with delta, gamma, and theta
The 2™ degree Taylor polynomial of both variables 0,, (S,t) of O about (S,t)o is
20(S, .t 20(S, .t
0,.(5.) =05, )+ 20N 5 ), 20un) o
1 0(S, .t 1 0(S, .t 1 0(S, .t -
R A VR i< U
From the definition of delta and gamma as before, as well as
0
=== 8.3.68
’ 8[ 8§=5,.t=t, , ( )
2’0
= , and 8.3.69
’ 8[2 8§=8,.t=t, " ( )
Charm = j;gt (8.3.70)

S=Sp1=1,

Again, based on the GBMOVM, the change in the option can be roughly estimated as
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do,, = A (uSdt +Sdz)+6,di + r2 (uSdt + oSdz)

A

6 Ch
+ 22+ (uSdt + o Sdz ) di
2 2 - . (8.3.71)
= A uSdt+ A oSdz+8 di+ 7( WS’de’ +2u0 S dtdz +6°S%dz’
6 Ch
2 dr? + == uSdr* + 6 Sdidsz )
2 2
Again, in the limit, based on well-known properties of Brownian motion,
dr’ =0, (8.3.72)
dtdz =0, and (8.3.73)
dz =dt. (8.3.74)
Thus,
r
do,, = [00 +A uS+ Tﬂozsz}h +A 0Sdz. (8.3.75)

Note that this is the [t6’s Lemma result of the standard GBMOVM.

Figure 8.3.10 illustrate incorporating theta where one week is assumed to have passed. Unfortunately, by
assuming the mere passage of time, the basic option valuation mapping changes. If we remap the option
valuation results, then the delta-gamma result becomes the delta-gamma-theta result. Thus, to improve the
estimate, we need higher order Greeks with respect to the underlying instrument.

Figure 8.3.10. Delta, Gamma, and Theta Approximations of GBMOVM
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Example 4: Long call option with delta, gamma, and speed
The 3™ Taylor polynomial 03(S) of 5 about § is

o"(S o"(S,
0,(8)=0(s,)+0'(s,)(S—S,)+ §!°)(S—SO)2+ 3(! 0)(5—50)3.
From the definition of delta and gamma as before and speed
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7’0(S)
JS°

Speed, = 0"(S, )= =-T d,, (speed) (8.3.76)

5=5,

3 d1+0'«/;
SoT

where

d, (8.3.77)
We have with some rearranging and substitutions,

2 Speed, (

(M)+%(AS) + ASY . (8.3.78)

Again, based on the GBMOVM, the change in the option can be roughly estimated as

do,=0,(S, +AS)-0(S,

)=A

o

do, = A, (uSdr +Sdz) + %( usdi +oSdz) +2 ‘;edo (uSdr +oSdz) - (8.3.79)

Note that in the limit, based on well-known properties of Brownian motion, we continue to have
r
dO:(AO,LLS+7”O'2S2Jdt+AOO'Sdz. (8.3.80)

as all higher order terms are eliminated. Note that this is the same result when Speed is ignored. Higher order
terms do not influence limiting results even though they do influence discrete changes.

As illustrated in Figure 8.3.11, the delta-gamma-speed estimate is an improvement, but we could use an
even more precise estimate for larger changes.

Figure 8.3.11. Delta, Gamma, and Speed Approximations of GBMOVM
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We now briefly sketch higher order derivatives. There is no evidence that knowledge of these higher order
derivatives is helpful in financial risk management activities.
Fourth derivative:

0, =—[0,4d,+0,d, |, (8.3.81)
where
add, —dlow/?—ozTH
Gs= s T sior
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Figure 8.3.12. Fourth Derivative Approximations of GBMOVM
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Figure 8.3.13. Fifth Derivative Approximations of GBMOVM

Sixth derivative:

where

Seventh derivative:
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0 [0 d +40.d. +60.d. . +40.d...+0..d ] (8.3.86)

78 6573 58738 457328 387338 287348
where
9'd, 24doNT +240°T -50 0387
345 (954 = S562T : ( o )
Eighth derivative:
Oy [07Sd3+5065d”+1005sd325+1004Sd33s+503Sd34s+025d35s} (8.3.88)
where
5 _ _ 2
P’d, _-120d,0\T - 1200 T+274 (83.89)

358 = 8S5 SGO.ZT
Ninth derivative:

Oy =—[ 04y, +60,4d,  +150,id, , +200,id, .  +150,3d, , +60,d,  +O,d, |, (8.3.90)

8573 785773,8 657328 587338 457348 3573,58 28573,68
where

2°d, 720d,oNT +7200°T -1,764
3,68 = &SG = S7O_2T :

(8.3.91)

Tenth derivative:
Oys [O d.+70,d,.+210,d, .+350 d.. +350.d,,.+210,d,...+70,d, .+0O, d ](8.3.92)

9873 85738 787328 657338 5877348 457358 3873,68 287378
where
9'd, —5,040d,0\T —5,0400°T +13,068 $3.03
378 T 0S8’ = S’oT ’ ( - )
Summary

Based on the notation presented in Module 5.4, we illustrated computing option Greeks within the geometric
Brownian motion option valuation model (GBMOVM) for European-style options. We further explore
differences between the Greeks based on the binomial option valuation model. We also examined various
extension available given a SRM approach to GBMOVM.
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See Module 5.4.
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