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Module 8.3: SRM GBM-Based Option Models 
Learning objectives 

• Explore measurement error between the binomial and closed-form model 
• Explain how to compute Greeks based on the geometric Brownian motion option models 
• Contrast no dividends and dividends with respect to Greek sensitivities 
• Provide detailed graphical analysis of European-style and American-style options 

 
Executive summary 
Based on the notation presented in Module 5.4, we illustrate computing option Greeks within the geometric 
Brownian motion option valuation model (GBMOVM) for European-style options. We further explore 
differences between the Greeks based on the binomial option valuation model. 
 
Central finance concepts 
Based on materials covered in Modules 8.1 and 8.2, we assume a familiarity with the option Greeks. In this 
section, we will review various graphical insights related to GBMOVM and related Greeks. In the 
quantitative finance materials section below, we will present the mathematical details as well as several 
extensions. 

GBMOVM Greeks 
We now present graphical results based on the R code provided for the Greeks as calculated by the 
GBMOVM. Specifically, we explore delta, gamma, vega, theta, and rho. Recall delta measures an option 
value's sensitivity to changes in the underlying instrument’s price. Gamma measures the delta’s sensitivity to 
changes in the underlying instrument’s price. Vega measures an option price’s sensitivity to changes in the 
underlying asset's volatility. Theta measures an option price's sensitivity to changes in the time to maturity. 
Rho measures an option price's sensitivity to changes in the interest rate. 
Measurement error with GBM binomial option valuation model 
Our focus here is comparing the American-style option Greeks from the binomial option valuation model 
using the enhanced method and the GBMOVM. Before working our way through the Greeks, we first 
illustrate measurement error when comparing the binomial approach to European-style option value and the 
GBMOVM. 
 Figure 8.3.1 illustrates this error from three perspectives. Note throughout all graphs, ES denotes 
European-style and AS denotes American-style. In almost all cases, the call and put errors are 
indistinguishable. Panel A highlights the difference with respect to moneyness. The error in this case is 
almost always less than $0.01. Panel B highlights the difference with respect to volatility with same 
boundaries but with a clear cyclical pattern. Panel C highlights the difference with respect to time to 
maturity. With longer time to maturity, the error declines. 
 
Figure 8.3.1. Measurement error between binomial and GBMOVM 
Panel A. Error with respect to stock price 
                                 No dividends                                                                       Dividend yield (5%) 
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Panel B. Error with respect to volatility 
                                 No dividends                                                                       Dividend yield (5%) 

   
Panel C. Error with respect to time to maturity 
                                 No dividends                                                                       Dividend yield (5%) 

   
 
Delta 
Figure 8.3.2 illustrates delta from several perspectives both without and with dividends (5%). Panel A just 
illustrates the relationship between the option values and the stock prices. Notice that when the interest rate 
equals the dividend yield the call and put equal each other at-the-money. The slopes of the lines in Panel A is 
delta as illustrated in Panel B. Panel B illustrates the influence of the early exercise feature on the delta for 
the American-style options. Panel C and D show the influence of volatility and time to maturity. 
 
Figure 8.3.2. Call and put deltas based on GBMOVM with and without dividends 
Panel A. Option value with respect to stock price 
                                 No dividends                                                                       Dividend yield (5%) 

   
  



 
© 2023 Robert Brooks. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. 

3 

Panel B. Delta with respect to stock price 
                                 No dividends                                                                       Dividend yield (5%) 

   
Panel C. Delta with respect to volatility 
                                 No dividends                                                                       Dividend yield (5%) 

   
Panel D. Delta with respect to time to maturity 
                                 No dividends                                                                       Dividend yield (5%) 

   
 
Gamma 
Figure 8.3.3 highlights the role of gamma. The lognormal distribution assumption is clear in Panel A except 
when the early exercise feature impacts option gammas. Panels B and C show that the gamma increases with 
declining volatility and with declining time to maturity. 
 
Figure 8.3.3. Call and put gamma based on GBMOVM with and without dividends 
Panel A. Gamma with respect to stock price 
                                 No dividends                                                                       Dividend yield (5%) 
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Panel B. Gamma with respect to volatility 
                                 No dividends                                                                       Dividend yield (5%) 

   
Panel C. Gamma with respect to time to maturity 
                                 No dividends                                                                       Dividend yield (5%) 

   
 
Theta 
Figure 8.3.4 highlights the role of thetas. Panel A documents the well-known time value decay—option 
values decline with the mere passage of time. Panel B shows that the theta has a non-monotonic relationship 
with the stock price. At-the-money options have the highest time value; hence, they have the most negative 
time value decay or theta. Panel C shows that theta generally declines with higher volatility. Panel D shows 
that theta generally increases with time to maturity. 
 
Figure 8.3.4. Call and put thetas based on GBMOVM with and without dividends 
Panel A. Option value with respect to time to maturity 
                                 No dividends                                                                Dividend yield (5%) 
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Panel B. Theta with respect to stock price 
                                 No dividends                                                               Dividend yield (5%) 

   
Panel C. Theta with respect to volatility 
                                 No dividends                                                                Dividend yield (5%) 

   
Panel D. Theta with time to maturity 
                                 No dividends                                                                Dividend yield (5%) 

   
 
Vega 
Recall vega is the first derivative of the option value with respect to volatility. Neither the stock nor the risk-
free interest rate is assumed to be influenced by changes in the stock's volatility. Volatility impacts both calls 
and puts the same.  
 For call options that are deep out-of-the-money, the call price changes very little with a small change in 
volatility (it does not really change the probability of the stock reaching the strike price), hence the vega is 
close to zero. The same is true for deep out-of-the-money puts. For small changes in the volatility for deep 
in-the-money calls, the call price does not change much because it is already in-the-money, hence again the 
vega is close to zero.  
 Figure 8.3.5 highlights the role of vega. Panel A shows that the option values are increasing with respect 
to volatility. Panel B shows that the vega reflects the lognormal distribution. Panel C shows that vega has a 
complex relationship with volatility. Panel D shows that vega generally increases with time to maturity. 
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Figure 8.3.5. Call and Put Vegas Based on GBMOVM With and Without Dividends 
Panel A. Option Value with Respect to Volatility 
                                 No dividends                                                                       Dividend yield (5%) 

   
Panel B. Vega with Respect to Stock Price 
                                 No dividends                                                                       Dividend yield (5%) 

   
Panel C. Vega with Respect to Volatility 
                                 No Dividends                                                                       Dividend Yield (5%) 

   
Panel D. Vega with Respect to Time to Maturity 
                                 No Dividends                                                                       Dividend Yield (5%) 

   
 
Rho 
Figure 8.3.6 highlights the role of rho. Panel A shows that the rho generally increases with the stock price, 
except for American-style puts. Panel B shows that rho generally declines with volatility. Panel C shows that 
rho generally increases with time to maturity for calls and decreases for puts. 
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Figure 8.3.6. Call and Put Rhos based on GBMOVM With and Without Dividends 
Panel A. Rho with Respect to Stock Price 
                                 No Dividends                                                                       Dividend Yield (5%) 

   
Panel B. Rho with Respect to Volatility 
                                 No Dividends                                                                       Dividend Yield (5%) 

   
Panel C. Rho with Respect to Time to Maturity 
                                 No Dividends                                                                       Dividend Yield (5%) 

   
 
Quantitative finance materials 
We now examine the technical details of GBMOVM Greeks. But first, we review the GBMOVM. 

GBM option valuation model (GBMOVM) 
Recall based on a set of restrictive assumptions, the GBMOVM can be expressed as 
 , (8.3.1) 
where again the indicator functions is expressed as 

 , (8.3.2) 

 ,  (8.3.3) 

 , (area under the standard cumulative normal distribution up to d) (8.3.4) 

O St ,t;ιU ,X ,T ,r,σ( ) = ιUStBδN ιUd1( )− ιU XBrN ιUd2( )

ιU =
+1 if underlying call option
−1 if underlying put option 

⎧
⎨
⎪

⎩⎪

Br = e
−r T−t( ) Bδ = e

−δ T−t( )

N d( ) = e− x
2 2

2π
dx

−∞

d

∫
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 , and (8.3.5) 

 . (8.3.6) 
If there is only a cash flow yield, then the call and put option equations can be expressed as 
  and (8.3.7) 

 . (8.3.8) 
Note that where convenient, we assume t = 0. 

GBMOVM Greeks 
We now cover the mathematical details related to Greeks as calculated by the GBMOVM. 
Delta 
Mathematically, delta is defined as 

 . (8.3.9) 

Sketch of proof: We cover a few preliminary concepts before providing a sketch of the derivation of delta. 
Based on put-call parity ( ), we know . Also, note from the definitions of 
d1 and d2, we can express them as 

 , and (8.3.10) 

 . (8.3.11) 

Therefore, 

 .  (Derivatives of d’s relation) (8.3.12) 

From the definition of the standard normal cumulative distribution function ( ), we have 

 .  (Standard normal probability density function) (8.3.13) 

Lemma: 
 
or . 

Lemma proof: Rearranging, we have 

 . (8.3.14) 

Focusing on the exponent, 

d1 =
ln
S0
X

⎛
⎝⎜

⎞
⎠⎟
+ r −δ + σ 2

2
⎛
⎝⎜

⎞
⎠⎟
T − t( )

σ T − t
d2 = d1 −σ T − t

c0 = S0e
−δ T−t( )N d1( )− Xe−r T−t( )N d2( )

p0 = Xe
−r T−t( )N −d2( )− S0e−δ T−t( )N −d1( )

ΔO ≡ ∂O
∂S

= ιU BδN ιUd1( )

c = Se−δT − Xe−rT + p Δc = e
−δT + Δ p

d1 =
ln S

X
⎛
⎝⎜

⎞
⎠⎟
+ r −δ + σ 2

2
⎛
⎝⎜

⎞
⎠⎟
T

σ T
=
ln S( )
σ T

+
− ln X( )+ r −δ + σ 2

2
⎛
⎝⎜

⎞
⎠⎟
T

σ T

d2 = d1 −σ T =
ln S( )
σ T

+
− ln X( )+ r −δ + σ 2

2
⎛
⎝⎜

⎞
⎠⎟
T

σ T
−σ T

∂d1
∂S

=
∂d2
∂S

= 1
Sσ T

N d( ) = e− x
2 2

2π
dx

x=−∞

x=d

∫
∂N d( )
∂d

≡ n d( ) = e
−d2 2

2π

n d1( ) = Xe
−rT n d2( )
Se−δT

n d2( ) = Se
−δT n d1( )
Xe−rT

Se−δT

Xe−rT
=
n d2( )
n d1( ) =

e−d2
2 2

2π
e−d1

2 2

2π

= e d1
2−d2

2( ) 2
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 . (8.3.15) 

Therefore, 

 . (8.3.16) 

With this background information, we are now ready to sketch the call delta proof. Based on fundamental 
calculus rules and the Black, Scholes, Merton call formula, we have 

 . (8.3.17) 

From the derivatives of d’s relation and the standard normal probability density function, we have 

 . (8.3.18) 

Finally, based on the lemma above, we have demonstrated that 

  . (8.3.19) 

and based on put-call parity, we have (recall  due to the symmetry of the standard normal 
distribution) 
 . (8.3.20) 

 The value of the European call option at expiration is either $0 if it is out-of-the-money (ST < X) or the 
intrinsic value (the dollar amount it is in-the-money, ST – X) when the stock ends up in-the-money (ST > X). 
Prior to expiration, the option has time value as well as intrinsic value. The time value of an option depends 
on the relationship between the current stock price and the strike price.  
Delta-neutral portfolio 
A delta-neutral portfolio is a portfolio that has a portfolio delta of zero. A zero delta implies that the value of 
the portfolio does not change for infinitesimal changes in the stock price. Hence, the value of the portfolio is 
not affected by small changes in the stock price. Therefore, to hedge against small changes in the stock price, 
trades should be conducted such that the portfolio delta is zero. 
 We can create a synthetic call using bonds and the underlying asset. It can be demonstrated that a 
portfolio of P = –c + SN(d1) is riskless because N(d1) is the delta. Hence the portfolio, P, should grow at the 
risk-free interest rate. Rearranging this relationship, we have c = SN(d1) – P which is the Black-Scholes 
formula with P = Xe–rTN(d2). Thus, a call option can be created synthetically using the underlying asset 
(buying N(d1) shares) and partially financing it with borrowing of P = Xe–rTN(d2). 
 The delta-neutral portfolio and portfolio insurance: Recall that portfolio insurance can be represented as 
long a stock and long a put or 
 S + p = S + Xe–rTN(–d2) + S( ) = S(1 + ) + Xe–rTN(–d2) 

d1
2 − d2

2

2
= 1
2
d1
2 − d1 −σ T( )2⎡

⎣⎢
⎤
⎦⎥
= 1
2
d1
2 − d1

2 + 2d1σ T −σ 2T⎡
⎣

⎤
⎦

= d1σ T − σ 2T
2

=
ln S

X
⎛
⎝⎜

⎞
⎠⎟
+ r −δ + σ 2

2
⎛
⎝⎜

⎞
⎠⎟
T

σ T

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

σ T − σ 2T
2

= ln S
X

⎛
⎝⎜

⎞
⎠⎟
+ r −δ( )T

e d1
2−d2

2( ) 2 = e
ln S
X

⎛
⎝⎜

⎞
⎠⎟
+ r−δ( )T

= Se
−δT

Xe−rT

∂c
∂S

= e−δT N d1( )+ Se−δT ∂N d1( )
∂S

− Xe−rT
∂N d2( )
∂S

= e−δT N d1( )+ Se−δT ∂N d1( )
∂d1

∂d1
∂S

− Xe−rT
∂N d2( )
∂d2

∂d2
∂S

∂c
∂S

= e−δT N d1( )+ Se−δT n d1( ) 1
Sσ T

− Xe−rT n d2( ) 1
Sσ T

∂c
∂S

≡ Δc = e
−δT N d1( )

N −d1( ) = 1− N d1( )

Δ p = Δc − e
−δT = e−δT N d1( )− e−δT = e−δT N d1( )−1⎡⎣ ⎤⎦ = −e−δT N −d1( )

Δ p Δ p
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(by substituting the Black-Scholes-Merton formula and the definition of ). Hence, portfolio insurance is 
related to the concept of a delta neutral portfolio with additional exposure in stock. Recall that  < 0 and 

 = 1 + . 
Gamma 
Mathematically, gamma is defined as 

 . (8.3.21) 

Sketch of proof: Recall based on put-call parity  and therefore we know 

 . (8.3.22) 

From the definition of call delta, 

 . (8.3.23) 

Theta 
Mathematically, theta is defined as 

 . (8.3.24) 

Sketch of proof: Theta is defined as the change in the option value for a given change in calendar time, 
measured in years. As calendar time passes, the time to maturity declines. Therefore, there exist a negative 
relationship between calendar time and time to maturity. We derive results for time to maturity and then at 
the end switch the sign. Time to maturity appears in a variety of places in the option valuation formulas. 
Therefore, this proof is rather tedious. Consider the following preliminaries: 

 , (8.3.25) 

 , and (8.3.26) 

 . (8.3.27) 

Therefore, 

 . (8.3.28) 

Based on  and the lemma above ( ), we have 

 . (8.3.29) 

Δ
Δ p

Δc Δ p

ΓO ≡ ∂2O
∂S 2

=
e−δT n d1( )
Sσ T

Δ p = Δc − e
−δT

∂Δ p

∂S
=
∂Δc
∂S

∂2c
∂S 2

=
∂Δc
∂S

= e−δT
∂N d1( )
∂S

= e−δT
∂N d1( )
∂d1

∂d1
∂S

=
e−qT n d1( )
Sσ T

θO ≡ ∂O
∂t

= − ∂O
∂T

= −
Se−δT n d1( )σ
2 T

− ιUrXe
−rT N ιUd2( )+ ιUδSe−δT N ιUd1( )

∂e−rT

∂T
= −re−rT

∂e−δT

∂T
= −δe−δT

∂d2
∂T

=
∂d1
∂T

− σT −1 2

2

∂c
∂T

= S ∂e
−δT

∂T
N d1( )+ Se−δT ∂N d1( )

∂T
− X ∂e−rT

∂T
N d2( )− Xe−rT ∂N d2( )

∂T

= −δSe−δT N d1( )+ Se−δT ∂N d1( )
∂d1

∂d1
∂T

+ rXe−rT N d2( )− Xe−rT ∂N d2( )
∂d2

∂d2
∂T

= −δSe−δT N d1( )+ rXe−rT N d2( )+ Se−δT n d1( ) ∂d1∂T
− Xe−rT n d2( ) ∂d2∂T

∂d2
∂T

=
∂d1
∂T

− σT −1 2

2
n d2( ) = Se

−δT n d1( )
Xe−rT

∂c
∂T

= −δSe−δT N d1( )+ rXe−rT N d2( )+ Se−δT n d1( ) ∂d1∂T
− Xe−rT

Se−δT n d1( )
Xe−rT

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

dd1
dT

− σT −1 2

2
⎡

⎣
⎢

⎤

⎦
⎥

= −δSe−δT N d1( )+ rXe−rT N d2( )+ Se
−δT n d1( )σ
2 T
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Recall the sign change related to how time is measured, we have 

 . (8.3.30) 

From put-call parity, we have 

 . (8.3.31) 

Substituting for call results above,
 

 
, (8.3.32) 

because of the normal distribution symmetry. Thus, 

 . (8.3.33) 

Vega 
Mathematically, vega is defined as 

 . (8.3.34) 

Sketch of proof: From put-call parity ( ), we know . Note 

 . (8.3.35) 

From the lemma above, we know 

 
. (8.3.36) 

Thus, 

 
, (8.3.37) 

because 
 
and by rearranging the lemma result as . 

 
Rho 
Mathematically, rho is defined as 

 . (8.3.38) 

Sketch of proof: From the definition of d2, we know 

θc ≡
∂C
∂t

= − ∂C
∂T

= −
Se−qT n d1( )σ
2 T

− rXe−rT N d2( )+ qSe−qT N d1( )

∂p
∂T

= ∂c
∂T

+δSe−δT − rXe−rT

∂p
∂T

= −δSe−δT N d1( )+ rXe−rT N d2( )+ Se
−δT n d1( )σ
2 T

+δSe−δT − rXe−rT

= −δSe−δT N −d1( )+ rXe−rT N −d2( )+ Se
−δT n d1( )σ
2 T

θ p ≡
∂p
∂t

= − ∂p
∂T

= −
Se−δT n d1( )σ
2 T

+ rXe−rT N −d2( )−δSe−δT N −d1( )

νO ≡ ∂O
∂σ

= Se−δT n d1( ) T = Xe−rT n d2( ) T

C = Se−δT − Xe−rT + P
∂c
∂σ

= ∂p
∂σ

∂c
∂σ

= Se−δT
∂N d1( )
∂σ

− Xe−rT
∂N d2( )
∂σ

= Se−δT
∂N d1( )
∂d1

∂d1
∂σ

− Xe−rT
∂N d2( )
∂d2

∂d2
∂σ

= Se−δT n d1( ) ∂d1∂σ
− Xe−rT n d2( ) ∂d2∂σ

n d2( ) = Se
−δT n d1( )
Xe−rT

∂c
∂σ

= Se−δT n d1( ) ∂d1∂σ
− Xe−rT

Se−δT n d1( )
Xe−rT

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

∂d2
∂σ

= Se−δT n d1( ) ∂d1
∂σ

−
∂d2
∂σ

⎡

⎣
⎢

⎤

⎦
⎥ = Se

−δT n d1( ) T = Xe−rT n d2( ) T
∂d2
∂σ

=
∂d1
∂σ

− T n d1( ) = Xe
−rT n d2( )
Se−δT

ρO ≡ ∂O
∂r

= ιU XTe
−rT N ιUd2( )
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 , (8.3.39) 

and put call parity 

 .  (8.3.40) 

From the call option formula, 

 . (8.3.41) 

Based on  and the lemma above ( ), we have 

 . (8.3.42) 

Substituting this result into the put-call parity expression above, 

 . (8.3.43) 

 We now turn to exploring other selected insights based on SRMs. 

Selected other insights based on Greeks 
We now examine a few other aspects related to the GBMOVM. Specifically, we explore the sensitivity of the 
Greeks to dividend yield as well as a few extended Greeks. Finally, we explore the use of selected Greeks to 
estimate option price changes. 
Sensitivity to dividend yield 
Figure 8.3.7 provides several graphs related to dividend yield. The dividend yield on the horizontal axis and 
the option prices or Greeks are on the vertical axis. For option values, the negative sloped line is the call and 
the positive sloped line is the put. Note that when the interest rate equals the dividend yield, the value of the 
call equals the value of the put. Each Greek is sensitive to dividend yield. 
 
Figure 8.3.7. Option Price and Greeks with Respect to Dividend Yield 

   

∂d2
∂r

=
∂d1
∂r

∂c
∂r

= rXe−rT + ∂p
∂r

∂c
∂r

= Se−δT
∂N d1( )

∂r
− X ∂e−rT

∂r
N d2( )− Xe−rT ∂N d2( )

∂r

= Se−δT
∂N d1( )
∂d1

∂d1
∂r

+ rXe−rT N d2( )− Xe−rT ∂N d2( )
∂d2

∂d2
∂r

= rXe−rT N d2( )+ Se−δT n d1( ) ∂d1∂r
− Xe−rT n d2( ) ∂d2∂r

∂d2
∂r

=
∂d1
∂r

n d2( ) = Se
−δT n d1( )
Xe−rT

∂c
∂T

= rXe−rT N d2( )+ Se−δT n d1( ) ∂d1∂r
− Xe−rT

Se−δT n d1( )
Xe−rT

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

∂d1
∂r

= rXe−rT N d2( )

∂p
∂r

= ∂c
∂r

− rXe−rT = rXe−rT N d2( )− rXe−rT = −rXe−rT N −d2( )
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Extended Greeks 
One way to categorize static risk measures, such as delta and gamma, is based on the derivative order. The 
option valuation model can be represented as a function of underlying parameters of underlying instrument 
value (S), time to maturity (T), volatility (σ), risk-free rate (r), strike price (X), and dividend yield (δ). 
  
First order risk measures include: 

• Delta (S) 
• Theta (t) 
• Vega (σ) 
• Rho (r) 
• (X) 
• (δ) 

Second order risk measures include: 
• Gamma (S,S), (S,t), (S,σ), (S,r), (S,X), (S,δ) 
• (t,S), (t,t), (t,σ), (t,r), (t,X), (t,δ) 
• (σ,S), (σ,t), Vanna (σ,σ), (σ,r), (σ,X), (σ,δ) 
• (r,S), (r,t), (r,σ), (r,r), (r,X), (r,δ) 
• (X,S), (X,t), (X,σ), (X,r), (X,X), (X,δ) 
• (δ,S), (δ,t), (δ,σ), (δ,r), (δ,X), (δ,δ) 

Higher order risk measures are also feasible. 
Estimating option price changes 
Based on delta and gamma along with the Taylor series approximation, we can estimate the dollar price 
change in the option for a given change in the underlying stock. We first briefly review the univariate Taylor 
series approximation. 
Theorem: Univariate Taylor Series 
Assume a continuous function , where  and . Also assume at  has 

derivatives of all orders. Then the Taylor series of  about the number  can be expressed as 

O = f S ,T ;σ ,r,X ,δ( )

f x( ) −∞ < x < ∞ −∞ < f x( ) < ∞ f x0( )
f x0
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 . (8.3.44) 

The nth Taylor polynomial  of  about  is  

 . (8.3.45) 

The nth Taylor remainder  of  about  is  

 . (8.3.46) 
It can be shown than 

 , (8.3.47) 

for some .1 
 We apply this theorem to improved estimates of changes in option prices for given changes in the 
underlying instrument’s value. 
 Example 1: Long call option estimated with delta only 
The 1st order Taylor polynomial  of  about  is  

 . (8.3.48) 
From the definition of delta 

 . (8.3.49) 

We have with some rearranging and substitutions, 
 . (8.3.50) 
Note in the limit and based on the BSMOVM GBM assumption (no dividends), 
 . (8.3.51) 
Thus, the change in the option can be roughly estimated as 
  
 Figure 8.3.8 illustrates the delta approximation of the change in the option price for a given change in the 
underlying instrument. We assume the base case is a non-dividend paying stock with an initial stock price of 
$100, strike price of $100, risk-free interest rate of 5%, volatility of 30%, and time to expiration of 1 year. 
The call price, according to the GBMOVM is $14.23. 
 

 
1 The univariate Taylor series can be found in just about any calculus book. See, for example, Ellis and 
Gulick [1982], 477. 

f x( ) = f ( i) x0( )
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x − x0( )2 +!+
f (n) x0( )
n!

x − x0( )n

rn f x0
rn x( ) = f x( )− pn x( )

rn x( ) = f
(n+1) xz( )
(n+1)!

x − x0( )n+1

x0 < xz < x

O1 S( ) S S0
O1 S( ) = O S0( )+O ' S0( ) S − S0( )

Δo = O ' S0( ) = ∂O S( )
∂S

S=S0

= ιOe
−δT N ιOd1( )
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dS = µSdt +σ Sdz
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Figure 8.3.8. Delta Approximation of the GBMOVM 

 
 
Clearly, based on Figure 8.3.8, we need a more precise estimate. Note that for a sufficiently large change in 
the underlying instrument value, we would estimate a change in the option price when compared to its 
original value, a very counterintuitive result. We now examine applying second order Taylor series. 
 Example 2: Long call option with delta and gamma 
The 2nd Taylor polynomial  of  about  is  

 . (8.3.52) 

From the definition of delta as before and gamma  

 , (8.3.53) 

where 

 . (8.3.54) 

We have with some rearranging and substitutions, 

 . (8.3.55) 

Again, based on the BSMOVM and GBM framework, the change in the option can be roughly estimated as 

 . (8.3.56) 

Note that in the limit, based on well-known properties of Brownian motion, 
 , (8.3.57) 
 , and (8.3.58) 
 . (8.3.59) 
Thus, in the limit, we know 

O2 S( ) S S0

O2 S( ) = O S0( )+O ' S0( ) S − S0( )+ O '' S0( )
2!

S − S0( )2

Γo = O '' S0( ) = ∂O2 S( )
∂S 2

S=S0

=
e−δT n d1( )
Sσ T

n d( ) = e
−d

2

2

2π

dO2 = O2 S0 + ΔS( )−O S0( ) = Δo ΔS( )+ Γo
2

ΔS( )2

dO2 = Δo µSdt +σ Sdz( )+ Γo
2

µSdt +σ Sdz( )2

= ΔoµSdt + Δoσ Sdz +
Γo
2

µ2S 2dt2 + 2µσ S 2dtdz +σ 2S 2dz2( )

dt2 = 0
dtdz = 0
dz2 = dt
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 . (8.3.60) 

As illustrated in Figure 8.3.9 below, the delta-gamma estimate is an improvement, but we could use an even 
more precise estimate for larger changes. Again, for a sufficiently large change in the underlying instrument 
value, we would estimate a change in the option price more than its original value, a very counterintuitive 
result. To improve our Taylor series estimation process as well as better understand the GBMOVM, we 
consider a multivariate Taylor series expansion. 
 
Figure 8.3.9. Delta and Gamma Approximations of GBMOVM 

 
 
For the next approximation, we need the multivariate version of Taylor series. 
 Theorem: Multivariate Taylor Series2 
Assume a continuous function , where  is a vector with  elements, and 

. Also assume at  has derivatives of all orders. Let  be the 
operators of partial differentiation where 
 , (8.3.61) 
and 
 , (8.3.62) 
and in the multidimensional case 

 ,  

where the required partial derivatives are assumed to exist. Then the Taylor series of f about the point  is 

 . (8.3.63) 

The kth degree Taylor polynomial of  variables  of  about  is  

 
2 See, for example, Aramanovich, et. al. [1965]. 
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 . (8.3.64) 

The kth Taylor remainder  of  about  is  

 .  
It can be shown than 

 ,  

for some . 
We now consider the case where the size of the vector  is . Assume a continuous function 

, where  and . Also assume at  has derivatives of 

all orders. Then the Taylor series of  about the numbers  is 

 . (8.3.65) 

Therefore, the 2nd Taylor polynomial  of  about  and  is  

. (8.3.66) 

 
 Example 3: Long call option with delta, gamma, and theta 

The 2nd degree Taylor polynomial of both variables  of  about  is  

 . (8.3.67) 

From the definition of delta and gamma as before, as well as 

 , (8.3.68) 

 , and (8.3.69) 

 . (8.3.70) 

Again, based on the GBMOVM, the change in the option can be roughly estimated as 
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 . (8.3.71) 

Again, in the limit, based on well-known properties of Brownian motion, 
 , (8.3.72) 
 , and (8.3.73) 
 . (8.3.74) 
Thus, 

 . (8.3.75) 

Note that this is the Itô’s Lemma result of the standard GBMOVM. 
 Figure 8.3.10 illustrate incorporating theta where one week is assumed to have passed. Unfortunately, by 
assuming the mere passage of time, the basic option valuation mapping changes. If we remap the option 
valuation results, then the delta-gamma result becomes the delta-gamma-theta result. Thus, to improve the 
estimate, we need higher order Greeks with respect to the underlying instrument. 
 
Figure 8.3.10. Delta, Gamma, and Theta Approximations of GBMOVM 

 
 
 Example 4: Long call option with delta, gamma, and speed 
The 3rd Taylor polynomial  of  about  is  

 .  

From the definition of delta and gamma as before and speed 
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 , (speed) (8.3.76) 

where 

 . (8.3.77) 

We have with some rearranging and substitutions, 

 . (8.3.78) 

Again, based on the GBMOVM, the change in the option can be roughly estimated as 

 . (8.3.79) 

Note that in the limit, based on well-known properties of Brownian motion, we continue to have 

 . (8.3.80) 

as all higher order terms are eliminated. Note that this is the same result when Speed is ignored. Higher order 
terms do not influence limiting results even though they do influence discrete changes. 
 As illustrated in Figure 8.3.11, the delta-gamma-speed estimate is an improvement, but we could use an 
even more precise estimate for larger changes.  
 
Figure 8.3.11. Delta, Gamma, and Speed Approximations of GBMOVM 

 
 
We now briefly sketch higher order derivatives. There is no evidence that knowledge of these higher order 
derivatives is helpful in financial risk management activities. 
Fourth derivative: 
 , (8.3.81) 
where 

 .  
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Figure 8.3.12. Fourth Derivative Approximations of GBMOVM 

 
 
Fifth derivative: 
 , (8.3.82) 
where 

 . (8.3.83) 

 
Figure 8.3.13. Fifth Derivative Approximations of GBMOVM 

 
 
Sixth derivative: 
 , (8.3.84) 
where 

 . (8.3.85) 

Seventh derivative: 
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 , (8.3.86) 
where 

 . (8.3.87) 

Eighth derivative: 
 , (8.3.88) 

where 

 . (8.3.89) 

Ninth derivative: 
 , (8.3.90) 
where 

 . (8.3.91) 

Tenth derivative: 
,(8.3.92) 

where 

 . (8.3.93) 

 
Summary 
Based on the notation presented in Module 5.4, we illustrated computing option Greeks within the geometric 
Brownian motion option valuation model (GBMOVM) for European-style options. We further explore 
differences between the Greeks based on the binomial option valuation model. We also examined various 
extension available given a SRM approach to GBMOVM. 
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