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Module 8.2: SRM ABM-Based Binomial Models 
Learning objectives 

• Computing call and put option Greeks using the ABM binomial option valuation approach 
• Contrast European-style and American-style call and put option Greeks using the ABM binomial 

option valuation approach 

 
Executive summary 
Recall arithmetic Brownian motion (ABM) results in a normally distributed terminal distribution. Based on 
the notation presented in Module 5.3, we illustrate computing option Greeks within the ABM binomial 
option valuation model for both European-style and American-style options. For comparison purposes, we 
present this module with the same format as Module 8.1 that focuses on GBM-based binomial models. 
 
Central finance concepts 
The main idea is once we have a robust ABM-based valuation model, we are now able to explore various 
static risk measures. After reviewing the valuation models introduced in Module 5.3, we explore option 
Greeks that are simply SRMs. 

ABM-based European-style binomial option valuation models 
Recall the ABM-based binomial option framework is designed to converge to a normal distribution in the 
limit to be consistent with the ABMOVM. This binomial framework has several objectives: 

1. Additive 
2. Recombining 
3. Incorporate dividends 
4. Address early exercise with American-style options  

Additive and recombining are incorporated using u and d parameters at each node.  
 There are several ABM-based multiperiod valuation models including when there are no dividends, when 
a dividend yield is assumed, and when discrete dividends are assumed. Further, there are several alternative 
ways to frame these models such as based on digital valuation models.  

ABM-based American-style binomial option valuation models 
For American-style options, he early exercise potential must be incorporated. As discussed below, the 
approach typically taken is known as backward induction. At each node, we must compare the following 
values, the model option value, the early exercise value, and the lower boundary condition. The existence of 
various forms of dividends simply changes the required formulas. 

Binomial option valuation model Greeks 
In the quantitative materials below, we explore delta, gamma, theta, vega, and rho, also known as the Greeks. 
The definitions of Greeks are independent of valuation model. Delta measures an option value's sensitivity to 
changes in the underlying instrument’s price. Gamma measures the delta’s sensitivity to changes in the 
underlying instrument’s price. Vega (also known as kappa, lambda, and sigma) measures an option price’s 
sensitivity to changes in the underlying asset's volatility. Theta measures an option price's sensitivity to 
changes in the time to maturity. Rho measures an option price's sensitivity to changes in the interest rate. 
 
Quantitative finance materials 
After a detailed review of various valuation models, we take a deep dive into SRMs related to ABM-based 
binomial option valuation models. 

ABM European-style multiperiod option model 
Recall the GBM European-style multiperiod option model results in a recombining tree in both outcomes as 
well as probabilities and can be expressed as 
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 , (8.2.1) 

where O0 denotes the current call or put value, i denotes an indicator function that equals +1 if call and –1 if 
put, and PVr is simply a present value factor.  
 Further, recall for ABM European-style multiperiod option model the probabilities are path dependent 
due to the geometric growth rate assumed for the underlying instrument. That is, 

 . (8.2.2) 

There are several ways to handle the computation of Pr(n,j) and recall we deployed backward recursion for 
both the European-style and American-style options. 

ABM American-style multiperiod option model 
The process for valuing American-style options is like European-style options. The only difference is that at 
each step, except the point in time of expiration, we consider whether early exercise is more valuable than 
continuation. Also, we consider whether there is a violation of lower boundary conditions. From Module 
8.2.1, we repeat the conditions to evaluate at each node as we work backward through the tree. 
 We know that at time i for j up moves, the binomial model value (denoted with B superscript) can be 
expressed as  
 , (8.2.3) 

where  denotes the present value at time i for the next  period based on the continuously 

compounded rate r and as defined before . With constant interest rates, we have 

. The binomial model value, however, may be lower than the early exercise value (denoted 
with superscript X) that can be expressed as 
 . (8.2.4) 

Recall the lower boundary condition (denoted with superscript L) is 
 . (8.2.5) 

Thus, the fair value of the American-style option at time i with j up moves is 
 . (8.2.6) 

Note assuming positive interest rates and no dividends  for call options and  for put 
options. The initial option value is obtained through backward induction along the binomial lattice for the 
underlying instrument. Recall with European-style options, the fair value at time i with j up moves is 
 . (8.2.7) 
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Binomial option valuation model Greeks 
We follow the definitions and procedures describe in Module 8.1 closely. For convenience, we reproduce 
key equations. 
Delta 
Delta is defined as 

 . (8.2.8) 

Within the binomial lattice, delta can be estimated in three ways, 

 , (Standard Binomial Method) (8.2.9) 

 , and (Enhanced Binomial Method) (8.2.10) 

 . (Numerical Method) (8.2.11) 

As Figure 8.2.1 illustrates, the enhanced method adds two additional time steps to align time to maturity. 
 
Figure 8.2.1. Illustration of standard and enhanced delta within ABM-based binomial models 
                      Standard Binomial Delta                             Enhanced Binomial Delta 

      
 
In most cases, the method of choice renders numerically similar results. Figure 8.2.2 illustrates all three 
methods of estimating delta. The two binomial methods are indistinguishable, and the numerical method is 
extremely close, but it oscillates across stock prices as seen better in Panel B. 
 

ΔO ≡ ∂O
∂S

ΔO ,i, j =
Oi+1, j+1 −Oi+1, j
Si+1, j+1 − Si+1, j

ΔO ,i, j =
Oi, j+1 −Oi, j−1
Si, j+1 − Si, j−1

ΔO ,i, j =
O S + h( )−O S − h( )

2h
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Figure 8.2.2. Three methods to estimate ABM-based European-style binomial call delta 
Panel A. Wide range of stock prices 

 
 
Panel B. Narrow range of stock prices 

 
 
Figure 8.2.3 illustrates the stock price on the horizontal axis and the option prices on the vertical axis. The 
positive sloped line is the call value, and the negative sloped line is the put value. 
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Figure 8.2.3. ABM-based European-style binomial model for calls and puts 

 
 
Recall for puts it is theoretically possible for the put option's value to fall below its intrinsic value [=max(0,X 
– S0)] when interest rates are positive because the lower bound is max[0,PV(X) – S0)]. Figure 8.2.4 (Panel A) 
illustrates the results for the puts. Panel B illustrates the call option’s value, and it will never fall below the 
intrinsic value [=max(0,S0 – X)] because the lower bound is max[0,S0 – PV(X)] is above it for positive 
interest rates. 
 
Figure 8.2.4. Call and put values based on the ABM-based binomial model 
Panel A. ABM-based European-style values, intrinsic value, and lower bound for puts 
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Panel B. ABM-based European-style values, intrinsic value, and lower bound for calls 

 
 
 Figure 8.2.5 shows the enhanced method and numerical method for estimating deltas with the binomial 
model assuming no dividends for both puts and calls as well as European-style and American-style options. 
Notice that with 250 time steps, the numerical method lacks smoothness whereas the enhanced method is 
relatively smooth. For deep in-the-money American-style puts, the boundary condition results in a delta of –
1.0 due to early exercise being optimal. Again, the enhanced method is virtually indistinguishable from the 
standard method and is not reported here. 
 
Figure 8.2.5. ABM-based call and put deltas based on binomial model without dividends 
                              Enhanced Method                                                 Numerical Method  

  
 
 Figure 8.2.6 shows the enhanced method and numerical method for estimating deltas with the binomial 
model assuming a 5% dividend yield. For deep in-the-money puts and calls, the boundary condition are 
obtained.  
 
Figure 8.2.6. ABM-based call and put deltas based on binomial model with dividends 
                              Enhanced Method                                                 Numerical Method  
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Gamma 
Mathematically, gamma is defined as 

 . (8.2.12) 

Within the binomial lattice, gamma can be estimated in three ways, 

 . (Standard Binomial Method) (8.2.13) 

 . (Enhanced Binomial Method) (8.2.14) 

 . (Numerical Method) (8.2.15) 

 Figure 8.2.7 provides a binomial lattice illustrating the appropriate lattice inputs for both the standard and 
enhanced methods for calculating gamma. 
 
Figure 8.2.7. Illustration of standard and enhanced gamma within binomial models 
                      Standard Binomial Gamma                             Enhanced Binomial Gamma 

                                   
 
In most cases, the method of choice renders numerically similar results. Figure 8.2.8 illustrates all three 
methods of estimating gamma. The two binomial methods are indistinguishable and the numerical method is 
extremely close, but it oscillates across stock prices. Further, the call and put results are identical. 
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∂S 2
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Si+2, j+2 − Si+2, j+1
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Figure 8.2.8. Three methods to estimate ABM-based European-style option gamma with no dividends 
                                Call Option                                                                 Put Options 

   
 
Figure 8.2.9 illustrate the three methods to estimating gamma in the presence of dividends. We assume here a 
5% dividend yield.  
 
Figure 8.2.9. Three methods to estimate ABM-based European-style gamma with dividends 
                                Call Option                                                                 Put Options 

   
 
Figure 8.2.10 illustrates the difference between the European-style and American-style options without 
dividends. In this case, only the put option encounters the boundary condition. 
 
Figure 8.2.10. ABM-based call and put gammas based on binomial model with no dividends 
                              Enhanced Method                                                 Numerical Method  

   
 
Figure 8.2.11 illustrates the difference between the European-style and American-style options with a 5% 
dividend yield. Both the American-style call and put encounter the boundary condition and the discontinuity 
points where the option valuation model encounters the lower bound.  
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Figure 8.2.11. Call and put gammas based on binomial model with dividends 
                                Enhanced Method                                                     Numerical Method 

   
 
Theta 
Mathematically, theta is defined as 

 . (8.2.16) 

Within the binomial lattice, theta can be estimated in three ways, 

 . (Standard Binomial Method) (8.2.17) 

 . (Enhanced Binomial Method) (8.2.18) 

 . (Numerical Method) (8.2.19) 

 Figure 8.2.12 provides a binomial lattice illustrating the appropriate lattice inputs for both the standard 
and enhanced methods for calculating theta. 
 
Figure 8.2.12. Illustration of standard and enhanced theta within binomial models 
                         Standard binomial theta                             Enhanced binomial theta 

      
 
In most cases, the method of choice renders numerically similar results. Figure 8.2.13 illustrates all three 
methods of estimating theta without and with dividends. As seen in Panel A, without dividends the two 
binomial methods are indistinguishable and the numerical method is extremely close, but it oscillates across 
stock prices. Panel B illustrates the influence of dividends. 
 
  

θO ≡ ∂O
∂t

θO ,i, j =
Oi+2, j+1 −Oi, j

2Δt

θO ,i, j =
Oi+2, j+1 −Oi−2, j−1

4Δt

θO ,i, j =
O t + h( )−O t − h( )

2h
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Figure 8.2.13. Illustration of theta within ABM-based binomial model  
Panel A. Without dividends 
                                Enhanced Method                                                     Numerical Method 

   
Panel B. With dividends 
                                Enhanced Method                                                     Numerical Method 

   
 
Although the pattern is roughly similar, the existence of dividends changes the theta values for both 
European and American style options. 
Vega 
Mathematically, vega is defined as 

 . (8.2.20) 

Within the binomial lattice, vega can be estimated based on the numerical method as 

 . (8.2.21) 

Vega is the first derivative of the option value with respect to volatility. Neither the stock nor the risk-free 
interest rate is assumed to be influenced by changes in the stock's volatility. Thus, volatility impacts both 
calls and puts the same based on put-call parity. Figure 8.2.14 illustrates this result without dividends. 
 
Figure 8.2.14. Illustration of vega within binomial model without dividends 
                                European-style                                                          American-style 

  
 
 Recall for call options that are deep out-of-the-money, the call price changes very little with a small 
change in volatility (it does not really change the probability of the stock reaching the strike price), hence the 

νO ≡ ∂O
∂σ

νO ,i, j =
Oσ +h,i, j −Oσ −h,i, j

2h
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vega is close to zero. The same is true for deep out-of-the-money puts. The relationship between the stock 
price and vega is illustrated in Figure 8.2.15. 
 
Figure 8.2.15. Vega with respect to stock price within binomial model with and without dividends 
                                   No dividends                                                             Dividend yield (5%) 

    
 
Rho 
Mathematically, rho is defined as 

 . (8.2.22) 

Within the binomial lattice, rho can be estimated based on the numerical method as 

 . (8.2.23) 

Rho is the first derivative of the option value with respect to the interest rate. Neither the stock nor volatility 
is assumed to be influenced by changes in the interest rate. Thus, the interest rate impacts calls different from 
puts based on put-call parity. Recall there is the present value of the exercise price in put-call parity giving an 
additional influence of interest rates. This result is illustrated in Figure 8.2.16. 
 
Figure 8.2.16. Illustration of rho within binomial model without dividends 
                           European-style                                                                American-style 

  
 
 Recall for call options that are deep out-of-the-money options, the option price changes very little with a 
small change in interest rates, hence the rho is close to zero. The relationship between the stock price and 
vega is illustrated in Figure 8.2.17. 
 
  

ρO ≡ ∂O
∂r

ρO ,i, j =
Or+h,i, j −Or−h,i, j

2h
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Figure 8.2.17. Rho with respect to stock price within binomial model with and without dividends 
                                   No dividends                                                             Dividend yield (5%) 

   
 
Summary 
We illustrated how to compute option Greeks within the GBM binomial option valuation model for both 
European-style and American-style options. 

In this chapter we covered one of the simplest but most important methods of valuing options: the 
binomial model. We showed how the model clearly illustrates the process by which a dynamically adjusted 
portfolio enables one to assign a value to an option that must hold to prevent arbitrage. We showed how this 
process works in one- and two-period models, and we also showed how the general binomial formula and 
Pascal’s triangle illustrates the extension to a multi-period world. We illustrated how the early exercise of 
American options is easily accommodated within the binomial model. 
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