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Module 8.1: SRM GBM-Based Binomial Models 
Learning objectives 

• Computing call and put option Greeks using the GBM binomial option valuation approach with the 
standard, enhanced, and numerical methods 

• Contrast European-style and American-style call and put option Greeks using the GBM binomial 
option valuation approach 

 
Executive summary 
Based on the material presented in Module 5.2, we illustrate computing option Greeks within the GBM 
binomial option valuation model for both European-style and American-style options. 
 
Central finance concepts 
The main idea is once we have a robust valuation model, we are now able to explore various static risk 
measures. After reviewing the valuation models introduced in Module 5.2, we explore option Greeks that are 
simply SRMs. 

GBM-based European-style binomial option valuation models 
Recall the GBM-based binomial option framework is designed to converge to a lognormal distribution in the 
limit to be consistent with the GBMOVM. This binomial framework has several objectives: 

1. Multiplicative 
2. Recombining 
3. Incorporate dividends 
4. Address early exercise with American-style options  

Multiplicative and recombining are incorporated using u and d parameters at each node.  
 There are several GBM-based multiperiod valuation models including when there are no dividends, when 
a dividend yield is assumed, and when discrete dividends are assumed. Further, there are several alternative 
ways to frame these models such as based on digital valuation models.  

GBM-based American-style binomial option valuation models 
For American-style options, he early exercise potential must be incorporated. As discussed below, the 
approach typically taken is known as backward induction. At each node, we must compare the following 
values, the model option value, the early exercise value, and the lower boundary condition. The existence of 
various forms of dividends simply changes the required formulas. 

Binomial option valuation model Greeks 
In the quantitative materials below, we explore delta, gamma, theta, vega, and rho, also known as the Greeks. 
Delta measures an option value's sensitivity to changes in the underlying instrument’s price. Gamma 
measures the delta’s sensitivity to changes in the underlying instrument’s price. Vega (also known as kappa, 
lambda, and sigma) measures an option price’s sensitivity to changes in the underlying asset's volatility. 
Theta measures an option price's sensitivity to changes in the time to maturity. Rho measures an option 
price's sensitivity to changes in the interest rate. 
 
Quantitative finance materials 
After a detailed review of various valuation models, we take a deep dive into SRMs related to GBM-based 
binomial option valuation models. 

GBM-based European-style binomial option valuation models 
Recall the GBM-based binomial framework has several objectives including multiplicative-based, 
recombining, able to incorporate dividends, and able to address early exercise with American-style options. 
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We now first review several versions of the GBM-based BOVM depending on the nature of dividend 
payments. 
No dividend yield multiperiod valuation equation 
The current value of an option is equal to the present value of the expected terminal payout as we assume 
European-style options. The multiperiod binomial valuation equation can be expressed as 
 , (9.1.1) 
where the binomial summations are 

 , (9.1.2) 

 , (9.1.3) 

 , (9.1.4) 

 , (9.1.5) 

where the indicator function denotes 

 ,  (9.1.6) 

 , (9.1.7) 

 , (9.1.8) 

 , (9.1.9) 

 , (9.1.10) 

  (9.1.11) 

 , and (9.1.12) 

 . (9.1.13) 

Alternatively, the binomial option valuation model can be expressed as 

 . 

where u and d are defined as 
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Dividend yield multiperiod period valuation equation 
As before, the current value of an option is equal to the present value of the expected terminal payout as we 
assume European-style options where the underlying instrument is adjusted for a continuously compounded 
cash flow yield. 
 , (9.1.16) 
where the binomial summations are 

 , (9.1.17) 

 , (9.1.18) 

 , (9.1.19) 

 , (9.1.20) 

where the terms are as defined before except 

 , (9.1.21) 

 . (9.1.22) 

Generically, the binomial option valuation model can be expressed as 

 , (9.1.23) 

where u and d are defined as 

  and (9.1.24) 

 . (9.1.25) 

Alternative expression of multi-period binomial option valuation model 
The multi-period binomial option valuation model is simply the present value of the expected terminal 
payout. For plain vanilla call and put options, we have 

  and (9.1.26) 

 . (9.1.27) 

For cash-or-nothing digital call and put options, we have 

  and (9.1.28) 

 . (9.1.29) 
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 For asset-or-nothing digital call and put options, we have 

O0 = PV Eπ OT( )⎡⎣ ⎤⎦ = ιUSe
−δT Bin1,ιU − ιU Xe

−rT Bin2,ιU

Bin1,1 ≡ Bin1, j>a,n =
n!

j!(n− j)!
⎛
⎝⎜

⎞
⎠⎟
π1
j 1−π1( )n− j

j>a

n

∑

Bin2,1 ≡ Bin2, j>a,n =
n!

j!(n− j)!
⎛
⎝⎜

⎞
⎠⎟
π 2
j 1−π 2( )n− j

j>a

n

∑

Bin1,−1 ≡ Bin1,0, j<a =
n!

j!(n− j)!
⎛
⎝⎜

⎞
⎠⎟
π1
j 1−π1( )n− j

j=0

j<a

∑

Bin2,−1 ≡ Bin2,0, j<a =
n!

j!(n− j)!
⎛
⎝⎜

⎞
⎠⎟
π 2
j 1−π 2( )n− j

j=0

j<a

∑

π = e
r−δ( )Δt − d
u − d

π 2 = π = e
r−δ( )Δt − d
u − d

O0 = PVr
n!

j!(n− j)!
⎛
⎝⎜

⎞
⎠⎟
π j 1−π( )n− jmax 0,ιUu jd n− jS0 − ιU X( )

j=0

n

∑⎡
⎣
⎢

⎤

⎦
⎥

u = e
r−δ( )Δt+A

Den

d = e
r−δ( )Δt

Den

c = e−rT n!
j!(n− j)!

⎛
⎝⎜

⎞
⎠⎟
π j 1−π( )n− jmax 0,u jd n− jS0 − X( )

j=0

n

∑

p = e−rT n!
j!(n− j)!

⎛
⎝⎜

⎞
⎠⎟
π j 1−π( )n− jmax 0,X − u jd n− jS0( )

j=0

n

∑

cCoN = e−rT DP n!
j!(n− j)!

⎛
⎝⎜

⎞
⎠⎟
π j 1−π( )n− j Iu jd n− jS0>Xj=0

n

∑

pCoN = e−rT DP n!
j!(n− j)!

⎛
⎝⎜

⎞
⎠⎟
π j 1−π( )n− j Iu jd n− jS0<Xj=0

n

∑



 
© 2023 Robert Brooks. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. 

4 

  and (9.1.30) 

 . (9.1.31) 

GBM-based American-style binomial option valuation models 
We briefly review the setup with and without dividends. 
No dividends model 
The current value of an option is no longer equal to the present value of the expected terminal payout as we 
assume American-style options. The early exercise potential must be incorporated. The approach typically 
taken is known as backward induction. “Backward induction is the process of reasoning backwards in time, 
from the end of a problem or situation, to determine a sequence of optimal actions. It proceeds by first 
considering the last time a decision might be made and choosing what to do in any situation at that time. 
Using this information, one can then determine what to do at the second-to-last time of decision. This process 
continues backwards until one has determined the best action for every possible situation (i.e., for every 
possible information set) at every point in time.”1 Thus, at the maturity of the option, we know 
 , (9.1.32) 

where j denotes the number of up moves for the underlying over the option life. The indicator function 
denotes 

  and (9.1.33) 

  (total number of time steps over option life). (9.1.34) 

Based on our single period results, we know that at time i for j up moves, the binomial model value (denoted 
with B superscript) can be expressed as  
 , (9.1.35) 

where  denotes the present value at time i for the next  period based on the continuously 

compounded rate r and as defined before , , ,  and

. With constant interest rates, we have . The binomial model value, however, may 

be lower than the early exercise value (denoted with superscript X) that can be expressed as 
 . (9.1.36) 

Recall the lower boundary condition (denoted with superscript L) is 
 . (9.1.37) 

Thus, the fair value of the American-style option at time i with j up moves is 
 . (9.1.38) 

Note assuming positive interest rates and no dividends  for call options and  for put 
options. The initial option value is obtained through backward induction along the binomial lattice for the 
underlying instrument. With European-style options, the fair value at time i with j up moves is 

 
1Wikipedia, “Backward Induction,” observed on February 20, 2017. 
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 . (9.1.39) 
Dividend yield model 
The process to compute the option value is the same at the no dividend case except 

 . (9.1.40) 

  and (9.1.41) 

 . (9.1.42) 

Based on our single period results, we know that at time i for j up moves, the binomial model value (denoted 
with B superscript) can be expressed as  
 , (9.1.43) 
Recall the lower boundary condition (denoted with superscript L) is 

 . (9.1.44) 

Thus, the fair value of the option at time i with j up moves is 
 . (9.1.45) 
The initial option value is obtained through backward induction along the binomial lattice for the underlying 
instrument. We now explore the binomial option valuation model Greeks 

Binomial option valuation model Greeks 
We now cover what are called the Greeks. Specifically, we focus here on understanding delta, gamma, theta, 
vega, and rho. Recall delta measures an option value's sensitivity to changes in the underlying instrument’s 
price. Gamma measures the delta’s sensitivity to changes in the underlying instrument’s price. Vega (also 
known as kappa, lambda, and sigma) measures an option price’s sensitivity to changes in the underlying 
asset's volatility. Theta measures an option price's sensitivity to changes in the time to maturity. Rho 
measures an option price's sensitivity to changes in the interest rate. 
Delta 
Mathematically, delta is defined as 

 . (9.1.46) 

Within the binomial lattice, delta can be estimated as 

 . (Standard Binomial Method) (9.1.47) 

Figure 8.1.1 provides a binomial lattice illustrating the appropriate lattice inputs for the delta calculation. 
Clearly, this delta calculation is based on observations at time i + 1. 
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Figure 8.1.1. Illustration of standard delta within GBM-based binomial model 

 
 
One alternative is to add two time steps to represent points in time (i – 2) and (i – 1). With these additional 
time steps, we can compute delta at time i. based on the two additional nodes at time i. This enhanced 
method resolves the timing problem and is illustrated in Figure 8.1.2. 
 
Figure 8.1.2. Illustration of enhanced delta within GBM-based binomial model 

 
 
Within the binomial lattice, this enhanced delta can be estimated as 

 . (Enhanced Binomial Method) (9.1.48) 

 The final method is to simply estimate the delta using the centered differencing technique explained in 
Module 7.1. 

 . (Numerical Method) (9.1.49) 
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In most cases, the method of choice renders numerically similar results. Figure 8.1.3 illustrates all three 
methods of estimating delta. The two binomial methods are indistinguishable, and the numerical method is 
extremely close, but it oscillates across stock prices as seen in Panel B. 
 
Figure 8.1.3. Three methods to estimate GBM-based European-style binomial call delta 
Panel A. Wide range of stock prices 

 
 
Panel B. Narrow range of stock prices 

 
 

 
Figure 8.1.4 illustrates the stock price on the horizontal axis and the option prices on the vertical axis. The 
positive sloped line is the call value, and the negative sloped line is the put value. 
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Figure 8.1.4. Call and put values based on GBM-based European-style binomial model 

 
 
The value of the European-style put option at expiration is either $0 if it is out-of-the-money (ST > X) or the 
intrinsic value (the dollar amount it is in-the-money) (X – ST) when the stock ends up in-the-money (ST < X). 
Prior to expiration, the option has time value as well as intrinsic value. The time value of an option depends 
on the relationship between the current stock price and the strike price. For puts it is theoretically possible for 
the put option's value to fall below its intrinsic value as illustrated in Figure 8.1.5 (Panel A). Recall the put 
European-style lower bound with no dividends is max[0,PV(X) – S0)]. Panel B illustrates the call option’s 
value, and it will never fall below the intrinsic value. Recall the call European-style lower bound with no 
dividends is max[0,S0 –PV(X)]. 
 
Figure 8.1.5. Call and put values based on GBM-based binomial model 
Panel A. European-style put values, put lower bound values, and put intrinsic values 
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Panel B. European-style call values, call lower bound values, and call intrinsic values 

 
 
 We now address the geometrical interpretation of delta. Delta is the change in the value of the option for a 
small change in the value of the stock or the first derivative of the option with respect to the stock. The 
relationship between the change in the option price, delta, and the change in the asset price can be expressed 
as approximately 
 Change in Option Value =  * Change in Stock Price. (9.1.50) 
 Example: Suppose the call option delta is 0.6 and the stock price increased by $0.5, approximately how 
much did the call price increase?  
 Change in the Call Value = 0.6 * $0.5 = $0.3. 
Rearranging the expression above, we have 
 = Change in Option Value / Change in Stock Price. (9.1.51) 
 Example: Suppose an option price rises by $0.3 when the stock price increases by $0.5. What is the 
estimated delta? 
 = $0.3 / $0.5 = 0.6 or 60%. (9.1.52) 
A delta-neutral portfolio is a portfolio that has a portfolio delta of zero. A zero delta implies that the value of 
the portfolio does not change for infinitesimal changes in the stock price. Hence, the value of the portfolio is 
not affected by small changes in the stock price. Therefore, to hedge against small changes in the stock price, 
trades should be conducted such that the portfolio delta is zero. 
 Example: Suppose you had a portfolio with a delta of 24 and a particular call option has a delta of 0.6. If 
you desired to completely hedge this portfolio with this call option, describe the appropriate trade. You 
would sell 40 call options each having a delta of –0.6 (because you sold). The delta of the short 40 calls is -
24 (40*(–0.6)) so the new portfolio delta is zero. 
Recall put-call parity can be expressed as 
 . (9.1.53) 
Recall that delta is the first derivative of the option value with respect to the stock value. Hence, we can take 
the first derivative of both sides of this equation. Thus, the delta of the call is related to the delta of the put as 
(the discounted strike price is unaffected by changes in the stock price) 
  = 1 + , (9.1.54) 
or 
  =  – 1. (9.1.55) 
For small changes in the stock price for a deep out-of-the-money call, the call price changes very little, hence 
the delta is close to zero. The same is true for deep out-of-the-money puts. For small changes in the stock for 
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deep in-the-money calls, the call price changes almost dollar for dollar with the stock price, hence the delta is 
close to one. For deep in-the-money puts, the delta is close to –1 (as the stock goes up $1, the put value falls 
by almost $1). Hence, the delta of puts and calls are constrained in the following way 
 0 £  £ 1 and (9.1.56) 
 –1 £  £ 0. (9.1.57) 
 Figure 8.1.6 shows the enhanced method and numerical method for estimating deltas with the binomial 
model assuming no dividends. Notice that with 250 time steps, the numerical method produces some lack of 
smoothness whereas the standard method is relatively smooth. For deep in-the-money puts, the boundary 
condition results in a delta of –1.0. The enhanced method is virtually indistinguishable from the standard 
method and is not reported here. 
 
Figure 8.1.6. Call and put deltas based on GBM-based binomial model without dividends 
                           Enhanced Method                                                       Numerical Method  

   
 
 Figure 8.1.7 shows the standard method and numerical method for estimating deltas with the binomial 
model assuming a 5% dividend yield. Notice again that with 250 time steps, the numerical method produces 
some lack of smoothness whereas the standard method is relatively smooth. For deep in-the-money puts and 
calls, the boundary condition are obtained. Again, the enhanced method is virtually indistinguishable from 
the standard method and is not reported here. 
 
Figure 8.1.7. Call and put deltas based on GBM-based binomial model with dividends 
                           Enhanced Method                                                       Numerical Method  

   
 
Gamma 
Mathematically, gamma is defined as 

 . (9.1.58) 

Within the binomial lattice, gamma can be estimated as 

 . (Standard Binomial Method) (9.1.59) 
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Figure 8.1.8 provides a binomial lattice illustrating the appropriate lattice inputs for the gamma calculation. 
Clearly, this delta calculation is based on observations at time i + 1. 
 
Figure 8.1.8. Illustration of standard gamma within GBM-based binomial model 

 
 
 Again, one alternative is to add two time steps to represent points in time (i – 2) and (i – 1). With these 
additional time steps, we can compute delta at time i. based on the two additional nodes at time i. This 
enhanced method resolves the timing problem and is illustrated in Figure 8.1.9. 
 
Figure 8.1.9. Illustration of enhanced gamma within GBM-based binomial model 

 
 
Within the binomial lattice, this enhanced gamma can be estimated as 

 . (Enhanced Binomial Method) (9.1.60) ΓO ,i, j =

Oi, j+1 −Oi, j
Si, j+1 − Si, j

−
Oi, j −Oi, j–1
Si, j − Si, j–1

Si, j+1 − Si, j–1
2



 
© 2023 Robert Brooks. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. 

12 

 The final method is to simply estimate the gamma using the centered differencing technique explained in 
Module 7.1. 

 . (Numerical Method) (9.1.61) 

In most cases, the method of choice renders numerically similar results. Figure 8.1.10 illustrates all three 
methods of estimating gamma. The two binomial methods are indistinguishable, and the numerical method is 
extremely close, but it oscillates across stock prices. 
 
Figure 8.1.10. Three methods to estimate GBM-based European-style gamma without dividends 
                           Call Options                                                                    Put Options  

   
 
Figure 8.1.11 illustrate the three methods to estimating gamma for GBM-based European-style options in the 
presence of dividends. We assume here a 5% dividend yield. 
 
Figure 8.1.11. Three methods to estimate GBM-based European-style gamma with dividends 
                           Call Options                                                                    Put Options  

   
 
Figure 8.1.12 illustrates the difference between the European-style and American-style options without 
dividends. In this case, only the put option encounters the boundary condition. 
 
Figure 8.1.12. Call and put gammas based on GBM-based binomial model with no dividends 
                           Enhanced Method                                                       Numerical Method  
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Figure 8.1.13 illustrates the difference between the European-style and American-style options with a 5% 
dividend yield. Both the American-style call and put encounter the boundary condition and the discontinuity 
points where the option valuation model encounters the lower bound.  
 
Figure 8.1.13. Call and put gammas based on GBM-based binomial model with dividends 
                           Enhanced Method                                                       Numerical Method  

   
 
Theta 
Mathematically, theta is defined as 

 . (9.1.62) 

 Theta is particularly challenging because we seek the change in the option value for only a change in the 
passage of calendar time. Recall the coherent binomial lattice adopted does not place a requirement that ud = 
1. Thus, over the lattice even by choosing the middle node, we have both the underlying and time changing. 
 Within the binomial lattice, theta can be estimated as 

 , (Standard Binomial Method) (9.1.63) 

only within a lattice that forces ud = 1. 
 Figure 8.1.14 provides a binomial lattice illustrating the appropriate lattice inputs for the theta calculation. 
Clearly, this theta calculation is based on observations at time i + 2. 
 
Figure 8.1.14. Illustration of standard theta within GBM-based binomial model 

 
 
 Again, one alternative is to add two time steps to represent points in time (i – 2) and (i – 1). With these 
additional time steps, we can compute theta at time i. based on the two additional nodes at time i. This 
enhanced method resolves the timing problem and is illustrated in Figure 8.1.15. Again, this results in a valid 
theta estimate only when ud = 1. 

θO ≡ ∂O
∂t

θO ,i, j =
Oi+2, j+1 −Oi, j

2Δt
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Figure 8.1.15. Illustration of enhanced theta within GBM-based binomial model 

 
 
Within the binomial lattice, this enhanced theta can be estimated as 

 . (Enhanced Binomial Method) (9.1.64) 

 Again, the final method is to simply estimate the gamma using the centered differencing technique 
explained in Module 7.1. 

 . (Numerical Method) (9.1.65) 

In most cases, the method of choice renders numerically similar results. Figure 8.1.16 illustrates all three 
methods of estimating theta without and with dividends. As seen in Panel A, without dividends the two 
binomial methods are indistinguishable and the numerical method is extremely close, but it oscillates across 
stock prices. Panel B illustrates the influence of dividends. 
 
Figure 8.1.16. Illustration of theta within GBM-based binomial model  
Panel A. Without dividends 
                           Enhanced Method                                                       Numerical Method  

   
  

θO ,i, j =
Oi+2, j+1 −Oi−2, j−1

4Δt

θO ,i, j =
O t + h( )−O t − h( )

2h
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Panel B. With dividends 
                           Enhanced Method                                                       Numerical Method  

   
 
Although the pattern is roughly similar, the existence of dividends changes the theta values for both 
European and American style options. 
Vega 
Mathematically, vega is defined as 

 . (9.1.66) 

Within the binomial lattice, vega can be estimated based on the numerical method as 

 . (9.1.67) 

Vega is the first derivative of the option value with respect to volatility. Neither the stock nor the risk-free 
interest rate is assumed to be influenced by changes in the stock's volatility. Thus, volatility impacts both 
calls and puts the same based on put-call parity. Figure 8.1.17 illustrates this result without dividends. 
 
Figure 8.1.17. Illustration of vega within GBM-based binomial model without dividends 
                             European-style                                                         American-style  

   
 
 For call options that are deep out-of-the-money, the call price changes very little with a small change in 
volatility (it does not really change the probability of the stock reaching the strike price), hence the vega is 
close to zero. The same is true for deep out-of-the-money puts. For small changes in the volatility for deep 
in-the-money calls, the call price does not change much because it is already in-the-money, hence again the 
vega is close to zero. The relationship between the stock price and vega is illustrated in Figure 8.1.18. 
 
  

νO ≡ ∂O
∂σ

νO ,i, j =
Oσ +h,i, j −Oσ −h,i, j

2h
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Figure 8.1.18. Vega with respect to stock price within GBM-based binomial model with and without 
dividends 
                             No dividends                                                              Dividends (5%)  

   
 
Rho 
Mathematically, rho is defined as 

 . (9.1.68) 

Within the binomial lattice, rho can be estimated based on the numerical method as 

 . (9.1.69) 

Rho is the first derivative of the option value with respect to the interest rate. Neither the stock nor volatility 
is assumed to be influenced by changes in the interest rate. Thus, the interest rate impacts calls different from 
puts based on put-call parity. Recall there is the present value of the exercise price in put-call parity giving an 
additional influence of interest rates. This result is illustrated in Figure 8.1.19. 
 
Figure 8.1.19. Illustration of rho within GBM-based binomial model without dividends 
                             European-style                                                         American-style  

   
 
 For call options that are deep out-of-the-money options, the option price changes very little with a small 
change in interest rates, hence the rho is close to zero. The same is not true for deep out-of-the-money 
options. For small changes in the volatility for deep in-the-money calls, the call price change is near one due 
to the boundary condition because it is already in-the-money. The relationship between the stock price and 
vega is illustrated in Figure 8.1.20. 
 
  

ρO ≡ ∂O
∂r

ρO ,i, j =
Or+h,i, j −Or−h,i, j

2h
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Figure 8.1.20. Rho with respect to stock price within GBM-based binomial model with and without 
dividends 
                             No dividends                                                                Dividends (5%)  

   
 
Summary 
We illustrated how to compute option Greeks within the GBM binomial option valuation model for both 
European-style and American-style options. 

In this chapter we covered one of the simplest but most important methods of valuing options: the 
binomial model. We showed how the model clearly illustrates the process by which a dynamically adjusted 
portfolio enables one to assign a value to an option that must hold to prevent arbitrage. We showed how this 
process works in one- and two-period models, and we also showed how the general binomial formula and 
Pascal’s triangle illustrates the extension to a multi-period world. We illustrated how the early exercise of 
American options is easily accommodated within the binomial model. 
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