Module 8.2: SRM ABM-Based Binomial Models

Learning objectives
e Computing call and put option Greeks using the ABM binomial option valuation approach
e Contrast European-style and American-style call and put option Greeks using the ABM binomial
option valuation approach

Executive summary

Recall arithmetic Brownian motion (ABM) results in a normally distributed terminal distribution. Based on
the notation presented in Module 5.3, we illustrate computing option Greeks within the ABM binomial
option valuation model for both European-style and American-style options. For comparison purposes, we
present this module with the same format as Module 8.1 that focuses on GBM-based binomial models.

Central finance concepts

The main idea is once we have a robust ABM-based valuation model, we are now able to explore various
static risk measures. After reviewing the valuation models introduced in Module 5.3, we explore option
Greeks that are simply SRMs.

ABM-based European-style binomial option valuation models
Recall the ABM-based binomial option framework is designed to converge to a normal distribution in the
limit to be consistent with the ABMOVM. This binomial framework has several objectives:

1. Additive

2. Recombining

3. Incorporate dividends

4. Address early exercise with American-style options

Additive and recombining are incorporated using u and d parameters at each node.

There are several ABM-based multiperiod valuation models including when there are no dividends, when
a dividend yield is assumed, and when discrete dividends are assumed. Further, there are several alternative
ways to frame these models such as based on digital valuation models.

ABM-based American-style binomial option valuation models

For American-style options, he early exercise potential must be incorporated. As discussed below, the
approach typically taken is known as backward induction. At each node, we must compare the following
values, the model option value, the early exercise value, and the lower boundary condition. The existence of
various forms of dividends simply changes the required formulas.

Binomial option valuation model Greeks

In the quantitative materials below, we explore delta, gamma, theta, vega, and rho, also known as the Greeks.
The definitions of Greeks are independent of valuation model. Delta measures an option value's sensitivity to
changes in the underlying instrument’s price. Gamma measures the delta’s sensitivity to changes in the
underlying instrument’s price. Vega (also known as kappa, lambda, and sigma) measures an option price’s
sensitivity to changes in the underlying asset's volatility. Theta measures an option price's sensitivity to
changes in the time to maturity. Rho measures an option price's sensitivity to changes in the interest rate.

Quantitative finance materials
After a detailed review of various valuation models, we take a deep dive into SRMs related to ABM-based
binomial option valuation models.

ABM European-style multiperiod option model
Recall the GBM European-style multiperiod option model results in a recombining tree in both outcomes as
well as probabilities and can be expressed as
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0,= PV, E,(0;)]

=PV [iPr(n, J) Payoff (1,n, j)} : (8.2.1)
=PV {%(ﬂ#l])v}m (1-7)"" max| 0,1(S'd" - X)]}

where Oy denotes the current call or put value, ¢ denotes an indicator function that equals +1 if call and -1 if
put, and PV, is simply a present value factor.

Further, recall for ABM European-style multiperiod option model the probabilities are path dependent
due to the geometric growth rate assumed for the underlying instrument. That is,

0, =PVr[EO(OT)]

=PV, {iPr(n, j) Payoff (1.n, j)} . (8.2.2)

J=0

=PV, {%Pr(n,j)max{o,lu[so +ju+("—f)d‘X]}}

There are several ways to handle the computation of Pr(#n,/) and recall we deployed backward recursion for
both the European-style and American-style options.

ABM American-style multiperiod option model
The process for valuing American-style options is like European-style options. The only difference is that at
each step, except the point in time of expiration, we consider whether early exercise is more valuable than
continuation. Also, we consider whether there is a violation of lower boundary conditions. From Module
8.2.1, we repeat the conditions to evaluate at each node as we work backward through the tree.

We know that at time i for j up moves, the binomial model value (denoted with B superscript) can be
expressed as

ij =PV i n |:¢i,j0i+l,j+l + (1 =9, ) O, :| ’ (8.2.3)
where PV At( ) denotes the present value at time i for the next A¢ period based on the continuously
S, (e =1)-d _ _
compounded rate r and as defined before ¢, = /—d With constant interest rates, we have
. "—
PV, (1) = ¢ ™. The binomial model value, however, may be lower than the early exercise value (denoted
with superscript X) that can be expressed as
0 =max[ 0., (S, - X)] (8.2.4)
Recall the lower boundary condition (denoted with superscript L) is
L_
o, =max{o.,[s, - PV, (X)]} (8.2.5)
Thus, the fair value of the American-style option at time i with j up moves is
0. :max(o_B_,O,X_,o_L_). (8.2.6)
ij L) L,J L]

Note assuming positive interest rates and no dividends OZ_LJ_ > OI_X/_ for call options and Ol_L/_ < Oin for put

options. The initial option value is obtained through backward induction along the binomial lattice for the
underlying instrument. Recall with European-style options, the fair value at time i with j up moves is

0,, =max(0!,0"). (8.2.7)

L]
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Binomial option valuation model Greeks

We follow the definitions and procedures describe in Module 8.1 closely. For convenience, we reproduce
key equations.

Delta

Delta is defined as

20
A =—. 8.2.8
0=33 (8.2.8)
Within the binomial lattice, delta can be estimated in three ways,
O'+1 i+ O‘+1 j . .
Ay, =—<—— (Standard Binomial Method) (8.2.9)
h Sz‘+1,j+1 - i+,
Oi ol 01' -1
Apis = S’ji”, and (Enhanced Binomial Method) (8.2.10)
il Pij-l
O(S+h)-0(S-h) :
01 = o . (Numerical Method) (8.2.11)

As Figure 8.2.1 illustrates, the enhanced method adds two additional time steps to align time to maturity.

Figure 8.2.1. Illustration of standard and enhanced delta within ABM-based binomial models
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In most cases, the method of choice renders numerically similar results. Figure 8.2.2 illustrates all three
methods of estimating delta. The two binomial methods are indistinguishable, and the numerical method is
extremely close, but it oscillates across stock prices as seen better in Panel B.
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Figure 8.2.2. Three methods to estimate ABM-based European-style binomial call delta
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Figure 8.2.3 illustrates the stock price on the horizontal axis and the option prices on the vertical axis. The
positive sloped line is the call value, and the negative sloped line is the put value.
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Figure 8.2.3. ABM-based European-style binomial model for calls and puts
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Recall for puts it is theoretically possible for the put option's value to fall below its intrinsic value [=max(0,X
— So)] when interest rates are positive because the lower bound is max[0,PV(X) — So)]. Figure 8.2.4 (Panel A)
illustrates the results for the puts. Panel B illustrates the call option’s value, and it will never fall below the
intrinsic value [=max(0,So — X)] because the lower bound is max[0,So — PV(X)] is above it for positive
interest rates.

Figure 8.2.4. Call and put values based on the ABM-based binomial model
Panel A. ABM-based European-style values, intrinsic value, and lower bound for puts

% — +, I"ammclcr
a T4 ©  Put Value
o, +, A Put Lower Bound Value
o%+++ +  Put Intrinsic Value
AAA+++
o _| a, "+
o a *4
*-
%2 %
a '+
2"+
) R+
= B )
=2 o | 838+*+
- hl 8oty
= 820"4.
o, a%q+
Aao#
A°$3
Sa by
— AAA"?
I a $o,
a ++°°°
AA ++ o
8,y 00q
AAc.+"+ 2900000,
a 9000g
= - %, 323
I | !
50 100 150

Stock Price
S=100,X=100,r=5.d=0,Vol=29.8848,T=1 N=250

5
© 2023 Robert Brooks. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.



Panel B. ABM-based European-style values, intrinsic value, and lower bound for calls
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Figure 8.2.5 shows the enhanced method and numerical method for estimating deltas with the binomial
model assuming no dividends for both puts and calls as well as European-style and American-style options.
Notice that with 250 time steps, the numerical method lacks smoothness whereas the enhanced method is
relatively smooth. For deep in-the-money American-style puts, the boundary condition results in a delta of —
1.0 due to early exercise being optimal. Again, the enhanced method is virtually indistinguishable from the
standard method and is not reported here.

Figure 8.2.5. ABM-based call and put deltas based on binomial model without dividends
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Figure 8.2.6 shows the enhanced method and numerical method for estimating deltas with the binomial
model assuming a 5% dividend yield. For deep in-the-money puts and calls, the boundary condition are
obtained.

Figure 8.2.6. ABM-based call and put deltas based on binomial model with dividends
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Gamma
Mathematically, gamma is defined as

_d’0
0= 25?2 :
Within the binomial lattice, gamma can be estimated in three ways,
Oi+2,j+2 - Oi+2,j+1 _ Oi+2,j+l - Oi+2,j
S ..=S. S =S
r, =—-2r2 i i #%  (Standard Binomial Method)
" Si+2,j+2_ i+2,)
2
0. .-0. 0 -0
i,j+1 ij o i i,j—1
S .=S8. S =5, . .
L= - =,/ (Enhanced Binomial Method)
” Si,j+l - Si,j—l
2
O(S+h)-0(S)|-|O|S)-O(S-h
Ty = [ ( ) ( )]hz[ ( ) ( ):| (Numerical Method)

(8.2.12)

(8.2.13)

(8.2.14)

(8.2.15)

Figure 8.2.7 provides a binomial lattice illustrating the appropriate lattice inputs for both the standard and

enhanced methods for calculating gamma.

Figure 8.2.7. Illustration of standard and enhanced gamma within binomial models
Standard Binomial Gamma Enhanced Binomial Gamma

Sisrje2
0i+1J+Z
S
pn
S,+1J+1
i1
0,’+1J+1
S, O:1)
i+2j+2 s Si;
0, i-2j-1 ij
i+2,j+2 Or2rs 0,
i-2,-
Si+1,,'+1 S. . SWJ
O s i-1j-1 O;vr:
i+1j+1 o i+1,)
Sit2; i1j-1
S; J i+2,j+1 S..
0 Onnrs ij-1
¥ 4241 0,1
Si +1j SIHJ—I
0i+1j O’H‘H
Si+2j
Oy1z;
| | | |
| I I l I | |
i-2 i-1 i i+1
i i+1 i+2

In most cases, the method of choice renders numerically similar results. Figure 8.2.8 illustrates all three
methods of estimating gamma. The two binomial methods are indistinguishable and the numerical method is
extremely close, but it oscillates across stock prices. Further, the call and put results are identical.
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Figure 8.2.8. Three methods to estimate ABM-based European-style option gamma with no dividends
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Figure 8.2.9 illustrate the three methods to estimating gamma in the presence of dividends. We assume here a
5% dividend yield.

Figure 8.2.9. Three methods to estimate ABM-based European-style gamma with dividends
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Figure 8.2.10 illustrates the difference between the European-style and American-style options without
dividends. In this case, only the put option encounters the boundary condition.

Figure 8.2.10. ABM-based call and put gammas based on binomial model with no dividends
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Figure 8.2.11 illustrates the difference between the European-style and American-style options with a 5%
dividend yield. Both the American-style call and put encounter the boundary condition and the discontinuity
points where the option valuation model encounters the lower bound.
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Figure 8.2.11. Call and put gammas based on binomial model with dividends
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Theta
Mathematically, theta is defined as
200
0=7, (8.2.16)
Within the binomial lattice, theta can be estimated in three ways,
O.,.,—0.. . .
0, = % (Standard Binomial Method) (8.2.17)
sLs, [
0.,..—0., ., . .
0, = % (Enhanced Binomial Method) (8.2.18)
s, t
O(t+h)-0(t—h) ,
90,1-,; = 5 . (Numerical Method) (8.2.19)

Figure 8.2.12 provides a binomial lattice illustrating the appropriate lattice inputs for both the standard
and enhanced methods for calculating theta.

Figure 8.2.12. Illustration of standard and enhanced theta within binomial models
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In most cases, the method of choice renders numerically similar results. Figure 8.2.13 illustrates all three
methods of estimating theta without and with dividends. As seen in Panel A, without dividends the two
binomial methods are indistinguishable and the numerical method is extremely close, but it oscillates across
stock prices. Panel B illustrates the influence of dividends.
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Figure 8.2.13. Illustration of theta within ABM-based binomial model
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Panel B. With dividends
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Although the pattern is roughly similar, the existence of dividends changes the theta values for both

European and American style options.
Vega
Mathematically, vega is defined as

200
vV, o=—. 8.2.20
0= ( )
Within the binomial lattice, vega can be estimated based on the numerical method as
O 0ii— i,
_ Oo+h,i,j o—h,i,j
Voi, = o . (8.2.21)

Vega is the first derivative of the option value with respect to volatility. Neither the stock nor the risk-free
interest rate is assumed to be influenced by changes in the stock's volatility. Thus, volatility impacts both
calls and puts the same based on put-call parity. Figure 8.2.14 illustrates this result without dividends.

Figure 8.2.14. Illustration of vega within binomial model without dividends
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Recall for call options that are deep out-of-the-money, the call price changes very little with a small

change in volatility (it does not really change the probability of the stock reaching the strike price), hence the
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vega is close to zero. The same is true for deep out-of-the-money puts. The relationship between the stock
price and vega is illustrated in Figure 8.2.15.

Figure 8.2.15. Vega with respect to stock price within binomial model with and without dividends
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Rho
Mathematically, rho is defined as
20
=—. (8.2.22)
o
or
Within the binomial lattice, rho can be estimated based on the numerical method as
_ Or+h,i,j - Or—h,i,j 8 2 23
p,,, = Il ki (82.23)

2h
Rho is the first derivative of the option value with respect to the interest rate. Neither the stock nor volatility
is assumed to be influenced by changes in the interest rate. Thus, the interest rate impacts calls different from
puts based on put-call parity. Recall there is the present value of the exercise price in put-call parity giving an
additional influence of interest rates. This result is illustrated in Figure 8.2.16.

Figure 8.2.16. Illustration of rho within binomial model without dividends
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Recall for call options that are deep out-of-the-money options, the option price changes very little with a
small change in interest rates, hence the rho is close to zero. The relationship between the stock price and
vega is illustrated in Figure 8.2.17.
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Figure 8.2.17. Rho with respect to stock price within binomial model with and without dividends
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We illustrated how to compute option Greeks within the GBM binomial option valuation model for both
European-style and American-style options.

In this chapter we covered one of the simplest but most important methods of valuing options: the
binomial model. We showed how the model clearly illustrates the process by which a dynamically adjusted
portfolio enables one to assign a value to an option that must hold to prevent arbitrage. We showed how this
process works in one- and two-period models, and we also showed how the general binomial formula and
Pascal’s triangle illustrates the extension to a multi-period world. We illustrated how the early exercise of
American options is easily accommodated within the binomial model.
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See Module 5.3.
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