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Module 7.3: Static Risk Management Corporate Bonds 
Learning objectives 

• Explores bond static risk management with defaultable bonds 
• Illustrate estimation of spread curve layered on top of the base curve 
• Identify factor sensitivities related to spread risk 

 
Executive summary 
We extend various aspects of traditional bond static risk measures to credit risky bonds. With this 
foundation, we then moved to advanced bond static risk measures of spreads based on an application of the 
LSC model. Within a detailed bond holding period return decomposition, we reviewed numerous new 
measures of related to spreads. The module concludes with selected explanations of selected R code. 
 
Central finance concepts 
Recall in the last module, we provided a detailed decomposition of interest rate and spread risk. We elaborate 
more fully here on the spread risk. Figure 7.3.1 once again provides the bond holding period return 
decomposition related solely to changes in the spread component. 
 
Figure 7.3.1. Bond holding period return decomposition of spread 

 
 
 Setting aside the technical complexities, we now illustrate the results of the R code provided in this 
module. With both the CMT yields and BB yields at a particular point in time, we fit a three factor LSC 
model illustrated in Figure 7.3.2. 
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Figure 7.3.2. CMT yields and BB yields along with four factor LSC fit and discount rates 

 
 
Once the LSC parameters are estimated, we can easily compute several values. Figure 7.3.3 presents the 
fitted yields as well as the spread. Clearly, the spread is the dominant driver of the all-in BB yield. 
 
Figure 7.3.3. Fitted CMT yields and BB yields along with the implied spread 

 
 
 Based on the quantitative model and R code discussed below, we have both the base curve and spread 
curve estimated with the LSC model. Within this framework, we are ready to explore a host of static risk 
measures. The all-in implied asked yield to maturity for the BB bonds is reported in Figure 7.3.4. 
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Figure 7.3.4. Asked yield to maturities implied by the asked prices with respect to maturity 

 
 
Note that there is no way to appraise which bond is trading for a lower price relative to the current market 
conditions. Figure 7.3.5 provide the implied asked yield to maturities with respect to duration. 
 
Figure 7.3.5. Asked yield to maturities implied by the asked prices with respect to duration 

 
 
 With effective duration, the relationship is now closer to linear, it remains unclear which bonds are 
expensive or cheap. Figure 7.3.6 illustrates the relative bond value error in two ways. The all-in LSC model 
is defined as the natural log of the bond value based on the all-in BB curve divided by the actual ask price. 
The two LSC models is defined as the natural log of the bond value based on the fitting the base curve and 
then the spread curve divided by the actual ask price. Thus, the lower the relative bond value error the more 
valuable the bond relative to the curves. Note that in most cases the bonds are trading over the all-in BB 
curve indicating a mark-up due to trading costs. Further, fitting two LSC curves results in larger errors 
compared to fitting just the all-in curve. 
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Figure 7.3.6. Relative bond value error with respect to duration 

 
 
Figure 7.3.7 illustrates the well-known relationship between effective duration and maturity. The longer the 
maturity the lower the marginal increase in effective duration, especially for higher coupon bonds. Thus, 
from an effective duration perspective there is not much difference between 20-, 25-, and 30-year bonds. 
 
Figure 7.3.7. Effective duration with respect to maturity 

 
 
Figure 7.3.8 shows that effective convexity has a convex relationship to effective duration. The higher the 
effective duration the higher the marginal increase in effective convexity. 
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Figure 7.3.8. Effective convexity with effective duration 

 
 
 We are now ready to turn to static risk measures based on decomposition of the LSC factors. While the 
number of different graphs that could be generated is vast, we focus on factor static risk measures based on a 
three factor LSC model with all-in scalar of 2, base curve scalar of 5, and spread curve scalar of 2. We 
purposely chose different scalars for the base curve and spread curve to illustration the flexibility of the LSC 
model approach. 
 Figure 7.3.9 illustrates four versions of duration. The traditional effective duration as well as the all-in, 
base curve, and spread curve level durations. The all-in level duration and effective durations are essentially 
equivalent. Recall that effective duration assumes a parallel shift in the yield curve and the all-in level 
duration essentially has the same effect. The base curve and spread curve level duration are essentially 
equivalent as it results in a parallel shift in the net of these two curves. 
 
Figure 7.3.9. Level duration with maturity 

 
 
 Figure 7.3.10 illustrates three versions of slope duration. Recall the traditional effective duration can only 
handle parallel shifts thus there is no comparable slope or curvature measures available. The all-in slope 
duration rises steeply and then plateaus. The base curve slope duration has the same pattern as level duration, 
but plateaus at a much lower value. The spread curve slope duration peaks due to being layered on top of the 
base curve that already is being influenced by the 5.0 scalar. 
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Figure 7.3.10. Slope duration with maturity 

 
 
 Figure 7.3.11 illustrates three versions of curvature1 duration. The all-in curvature1 duration rises steeply 
and then plateaus around 1.5. The base curve curvature1 duration has the same pattern but plateaus at a much 
higher value. The spread curve curvature1 duration peaks due to being layered on top of the base curve that 
already is being influenced by the 5.0 scalar. Note the pattern is like the spread curve slope duration. 
 
Figure 7.3.11. Curvature1 duration with maturity 

 
 
 Figure 7.3.12 illustrates four versions of convexity. The traditional effective convexity as well as the all-
in, base curve, and spread curve level convexities. The base curve and spread curve level convexities are 
essentially equivalent. The effective convexity is slightly below the base and spread curve versions and the 
all-in level is the lowest. 
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Figure 7.3.12. Level convexity with maturity 

 
 
 Figure 7.3.13 illustrates three versions of slope convexity. As with duration, the traditional effective 
convexity can only handle parallel shifts thus there is no comparable slope or curvature measures available. 
The base curve slope convexity rises steeply and then plateaus. The all-in slope convexity has the same 
pattern as base curve slope convexity but plateaus at a much lower value. The spread curve slope convexity 
peaks due to being layered on top of the base curve that already is being influenced by the 5.0 scalar. 
 
Figure 7.3.13. Slope convexity with maturity 

 
 
 Figure 7.3.14 illustrates three versions of curvature1 convexity. The base curve curvature1 convexity rises 
steeply and then plateaus. The all-in curvature1 convexity has the same pattern as base curve curvature1 but 
plateaus at a much lower value. The spread curve curvature1 convexity peaks due to being layered on top of 
the base curve that already is being influenced by the 5.0 scalar. Note the pattern is like the spread curve 
slope duration. 
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Figure 7.3.14. Curvature1 convexity with maturity 

 
 
 The next three figures illustrate cross convexity results. 
 
Figure 7.3.15. Cross convexity level/slope with maturity 
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Figure 7.3.16. Cross convexity level/curvature1 with maturity 

 
 
Figure 7.3.17. Cross convexity slope/curvature1 with maturity 

 
 
 Figure 7.3.18 provides estimates of the horizon holding period return under the two curve fitting 
methodologies. The all-in curve is more sensitive to maturity than the two curves approach. 
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Figure 7.3.18. Horizon holding period return with maturity 

 
 
 We turn now to briefly review the technical aspects of spreads. 
 
Quantitative finance materials 
With credit risky bonds, we can apply the same LSC model approach to credit spreads. We now explore the 
technical details that a similar in construct to rates. 

Advanced bond static risk measures: Applying the LSC model with default risk1 
Based on the notation provided in Module 7.1, recall  

 . (7.3.1) 

Thus, the framework allows for multiple spread curves with as many individual factors as desired. Our focus 
here will be just one spread curve (BB yields over CMT) for illustration purposes. 
 Recall the bond value can be estimated at t with the LSC model as 

 . (7.3.2) 

At time t + D assuming only the spread changes, we have 

 . (LSC Spread Curve at t + D) (7.3.3) 

where 

 . (7.3.4) 
 Most data services that provide credit spread information report the all-in rate for different credit ratings, 
such as BB. Thus, the input is not the actual spread, rather the spread must be computed. There are numerous 
approaches to make these estimates. The approach we take is to first estimate the base curve via the LSC 
model. Thus, we have the functional form for the base curve, , as well as the spread adjusted all-in rate 

denoted here as  for selected maturities. We therefore can estimate the inputted spreads based on the 
following relationship. 
 . (7.3.5) 

 
1The next several sections are based on Brooks and Upton (2017) and Brooks (2017). 
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With these estimated spreads, we can compute the functional form for the spread curve, . 
 Recall the bond spread holding period return can be expressed as 

 . (7.3.6) 

Also, the spreads are computed in three ways, 

 , (Fit at time t, analyzed at time t) (7.3.7) 

 , (Fit at time t, analyzed at time t + D) (7.3.8) 

 . (Fit at time t + D, analyzed at time t + D) (7.3.9) 

Thus, 
  or (Spread) (7.3.10) 
 
Interpreting LSC factor static risk measures 
We focus now on interpreting the static risk measures defined above within the context of bond HPRs. From 
the definition of bond HPR based on the LSC framework, we have 

 , (7.3.11) 

where RC denotes the return contribution, r denotes the base rate, sp denotes the spread, FD denotes the LSC 
factor durations, FC denotes the LSC factor convexities, and FCC denotes the LSC factor cross-convexities. 
 Each of the above return contributions can be further decomposed in the following manner, 
 , (7.3.12) 

 , (7.3.13) 

 , and (7.3.14) 

 . (7.3.15) 

Note that for most applications, most return contributions will be negligible. Thus, the actual analysis will be 
more straightforward. When developing software solutions however, it is better to have a thorough design 
that can be simplified by the user. 
 Recall the return contributions for spreads are as follows, 
 , (7.3.16) 
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 , (7.3.20) 
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 , (7.3.21) 

 , (7.3.22) 

 , and (7.3.23) 

 . (7.3.24) 
 For completeness, we also provide the explicit factor durations, factor convexities, and factor cross 
convexities for spreads. 

 , (7.3.25) 

 , (7.3.26) 

 , (7.3.27) 

 , (7.3.28) 

 , (7.3.29) 

 , (7.3.30) 

 , (7.3.31) 

 , and (7.3.32) 

 . (7.3.33) 

 Again, for most applications, most return contributions will be negligible. Thus, the actual analysis will 
be more straightforward. When developing software solutions however, it is better to have a thorough design 
that can be simplified by the user. 
 We are now ready to extend the analysis of Module 7.2 to include spreads in R code. 
 
Summary 
We extended various aspects of traditional bond static risk measures to credit risky bonds. With this 
foundation, we then moved to advanced bond static risk measures of spreads based on an application of the 
LSC model. Within a detailed bond holding period return decomposition, we reviewed numerous new 
measures of related to spreads. The module concludes with selected explanations of selected R code. 
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See Module 7.2. 
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