

© 2023 Robert Brooks. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

1

Module 7.2: Static Risk Management U. S. Treasuries
R Commentary

See module Ch 8.2 SRM US Treasuries.

We comment on selections from three test programs along with associated other files.
SRM Traditional UST Test.R (Selected Excerpts and Output)
This program illustrates three bonds with identical characteristics except for coupon amount. The base bond
is an actual bond with roughly 10 years to maturity and a stated coupon of 2.25%. We compare its sensitivity
to a 1.125% coupon bond and a 3.375% coupon bond. This program follows closely with Module 4.1 with
the addition of selected traditional duration and convexity measures. The core source code is the following
for loop where the methods for various calculations are called.
for(i in 1:NumberOfObservations){
 Y[i] <- LowerBound + (i-1)*StepSize
 BONDInputData$YieldToMaturity = Y[i]
 BONDInputData$CouponRate = originalCR
 OBV[i] = BondValue(BONDInputData) #- AccruedInterest(BONDInputData)
 ODuration[i] = Duration(BONDInputData)
 OConvexity[i] = Convexity(BONDInputData)
 # High Coupon
 BONDInputData$CouponRate = HCoupon
 HBV[i] = BondValue(BONDInputData) #- AccruedInterest(BONDInputData)
 HDuration[i] = Duration(BONDInputData)
 HConvexity[i] = Convexity(BONDInputData)
 # Low Coupon
 BONDInputData$CouponRate = LCoupon
 LBV[i] = BondValue(BONDInputData) #- AccruedInterest(BONDInputData)
 LDuration[i] = Duration(BONDInputData)
 LConvexity[i] = Convexity(BONDInputData)
 BONDInputData$CouponRate = originalCR
}
Note that the bond value could easily be adjusted to hold only the quoted bond price by extracting the
accrued interest (currently commented out). Standard duration and convexity values are estimated based on
their analytic expressions given in this module.

Duration: Macaulay duration

Duration = function(B){
 with(B,{
 DV = 0.0
 RemainingCoupons = CouponsRemaining(B)
 ElapsedTime = FractionElapsed(B)
 for(i in 1:RemainingCoupons){
 DV = DV + (i - ElapsedTime)*((CouponRate/(Frequency*100.0))*Par) /
 ((1.0 + (YieldToMaturity/(Frequency*100.0)))^(i + 1 - ElapsedTime))
 }
 DV = DV + ((RemainingCoupons - ElapsedTime) * Par) /
 ((1.0 + (YieldToMaturity /
 (Frequency*100.0)))^(RemainingCoupons + 1 - ElapsedTime))
 DV = DV / (Frequency*BondValue(B))
 return(DV)
 })
}

Convexity: Standard convexity

Convexity = function(B){
 with(B,{
 Convexity = 0.0
 RemainingCoupons = CouponsRemaining(B)
 ElapsedTime = FractionElapsed(B)

© 2023 Robert Brooks. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

2

 for(i in 1:RemainingCoupons){
 Convexity = Convexity + ((i + 1 - ElapsedTime)*(i - ElapsedTime) *
 ((CouponRate/(Frequency*100.0))*Par)) /
 ((1.0 + (YieldToMaturity/(Frequency*100.0)))^(i + 2 - ElapsedTime))
 }
 Convexity = Convexity + ((RemainingCoupons + 1 - ElapsedTime) *
 (RemainingCoupons - ElapsedTime) * Par) /
 ((1.0 + (YieldToMaturity /
 (Frequency*100.0)))^(RemainingCoupons + 2 - ElapsedTime))
 Convexity = Convexity/((Frequency^2) * BondValue(B))
 return(Convexity)
 })
}
 We now turn to more advanced applications by tying UST bond values to the CMT curve fitted with the
LSC model. We first explore a dataset comprising all traded UST notes and bonds.

SRM UST Book Spreads Over CMT Test.R (Selected Excerpts and Output)
In this test program, we explore the entire set of UST notes and bonds as provided by the Wall Street
Journal. The data was taken manually from the Treasury markets data page and pasted into a spreadsheet.
Prior to analyzing the effective duration and effective convexity of every bond, we select one to repeat the
valuation analysis as review. The snippet of code presented here is just setting up the analysis.

Fixed Parameters

inputFrequency <- 2
inputPar <- 1000000.0
inputChangeInYTM <- 0.01 # Effective duration and convexity
RoughMaturity <- 10 # Years
NFactors <- 4 # Number of factors including Level, 8 or less
NBaseCurve <- 30 # Potential observation for every year for 30 years
Plot range information
FixRange <- FALSE # For plots
FRMax <- 3.1 # Plot bounds if fixed
FRMin <- 2.4
Input files for U. S. Treasury bond and CMT rates
USTFileName <- 'UST20200619.xlsx'
CMTFileName <- 'CMT20200619.xlsx' # Should have same date as UST
mTitle = "UST: June 19, 2020" # Date in graph title
Downloaded UST data stored with date appended: use for settlement
SettlementDateMonth = 6 # Based on file name
SettlementDateDay = 19 + 2 # Current practice is + 2 days settlement
SettlementDateYear = 2020
source("UST Book Inputs.R") # Access UST book
source("SRM UST Functions.R") # UST functions (semi-annual only)

Next we pick a bond with slightly more than 10 years to maturity and replicate selected valuation
calculations. We provide a few lines next from the console window.
> UST[SelectedBond,] # Console: Selected bond parameters
 COUPON ASKED ASKED.YIELD JMaturityDate MaturityDate APrice
260 5.375 148.106 0.665 25978 2/15/2031 148.3281
…
> # Calendar manipulations
> N = CouponsRemaining(BONDInputData)
> # ElapsedOutput contains fraction, JLastDate, JNextDate, and JCurrentDate
> ElapsedOutput = Elapsed(BONDInputData)
> # Number of Total Days
> NTD <- ElapsedOutput$NextDate - ElapsedOutput$LastDate
> # Number of Accrued Days since last semi-annual coupon
> NAD <- ElapsedOutput$Fraction * NTD
> # Fraction of coupon period that has elapsed already
> f <- ElapsedOutput$Fraction
> # Bond maturity, in years
> Mat <- TimeToMaturity(BONDInputData)

© 2023 Robert Brooks. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

3

> NAD; NTD; f; N; Mat
[1] 127
[1] 182
[1] 0.6978022
[1] 22
[1] 10.6511
> # Bond value given yield to maturity
> MarketQuotedBondPrice <- inputBondPrice
> MarketValueOfBond <- BondValue(BONDInputData)
> AccruedInterestAmount <- AccruedInterest(BONDInputData)
> ModelQuotedBondPrice <- MarketValueOfBond - AccruedInterestAmount
> MarketValueOfBond; AccruedInterestAmount;
[1] 1502281
[1] 18753.43
> ModelQuotedBondPrice; MarketQuotedBondPrice
[1] 1483528
[1] 1483281
> # Yield to maturity given bond value
> inputBondPrice = MarketQuotedBondPrice #Dollars:Quoted price w/o accrued interest
> BONDInputData$BondPrice <- inputBondPrice
> EstYieldToMaturity = YieldToMaturitySolver(BONDInputData)
> EstYieldToMaturity; inputYieldToMaturity
[1] 0.6669188
[1] 0.665
Based on the selected bond, we confirm that the bond quoted value is roughly equivalent to the quoted
market price and the estimated yield to maturity is very close to the reported yield to maturity. Remember, in
this calculation, there is always some estimation error due to the reported numbers being rounded.
 We now seek to fit the LSC model to CMT rates. We deploy a four factor model where the scalar
coefficients are the selected bond maturity for the first one (s1 = 10.65 years) and arbitrarily three years for
the second one (s2 = 3 years). Generally, you want the scalars to be significantly different and focused on the
portion of the maturities where maximal fit is important for your purposes. The scalars are set in the CMT
Inputs.R file. The following are selected excerpts from the console related to fitting the CMT curve.
> # Just quickly check input parameters for DiffCMTRates
> x
[1] 1.47 -1.29 0.00 0.00
> NFactors
[1] 4
> Sc
[1] 10.6511 3.0000
> NBaseCurve
[1] 30
> MarketCMTRates
 [1] 0.18 0.19 0.22 NA 0.33 NA 0.53 NA NA 0.70 NA
[12] NA NA NA NA NA NA NA NA 1.23 NA NA
[23] NA NA NA NA NA NA NA 1.47
> # Given coefficients for discount curve based on LSC,
> # estimate sum squared difference
> Answer <- DiffCMTRates(x, NFactors, Sc, NBaseCurve, MarketCMTRates)
> Answer
[1] 0.381357

Clearly, the function DiffCMTRates does not return zero; hence, the initial LSC parameters, x, are not the
optimal ones.
> # optimx R package provides minimization routine to select LSC coefficients
> # to minimize squared differences #, all.methods=TRUE (uses all methods)
> OptOutput <- optimx(par=x, fn=DiffCMTRates, NFac = NFactors, S = Sc,
+ NCMTs = NBaseCurve, MSR = MarketCMTRates,
+ method=c('nlminb'), control=list(save.failures=FALSE, maxit=2500))
> # If 'nlminb' failed, then try a few more optimization routines,
> # quit when first one produces answer
…
The vector y contains the proposed optimal LSC parameters of the four factor model.
> y

© 2023 Robert Brooks. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

4

[1] 2.253396 -2.021602 0.315353 -1.164027
> # Check to see if sum of squared errors is close to zero
> Answer2 <- DiffCMTRates(y, NFactors, Sc, NBaseCurve, MarketCMTRates)
> Answer2
[1] 0.001759754
Here we find the sum of squared errors to be very close to zero. With the fitted LSC model, we are ready to
turn to estimating the spot rates and discount rates.
SREstimates <- CMTRates(y, NFactors, Sc, NBaseCurve)
SREstimates
Based on LSC parameters, y, and other inputs, NFactors, Sc, NBaseCurve,
provide estimates of fitted discount rates
DREstimates <- DiscountRates(y, NFactors, Sc, NBaseCurve)
DREstimates
Based on numerical approximation, effective duration is very easy to code.

Effective Duration

EffectiveDuration = function(B){
 OriginalYTM = B$YieldToMaturity
 OriginalBV = BondValue(B)
 B$YieldToMaturity = OriginalYTM + B$ChangeInYTM
 UpBV = BondValue(B)
 B$YieldToMaturity = OriginalYTM - B$ChangeInYTM
 DownBV = BondValue(B)
 B$YieldToMaturity = OriginalYTM
 EffDur = (DownBV - UpBV)/(2.0*OriginalBV*(B$ChangeInYTM/100.0))
 return(EffDur)
}
Based on numerical approximation, effective convexity is also very easy to code. Note the log transform is
used because for some very small changes in yield, machine error can be significant.

Effective Convexity

EffectiveConvexity = function(B){
 OriginalYTM = B$YieldToMaturity
 OriginalBV = BondValue(B)
 B$YieldToMaturity = OriginalYTM + B$ChangeInYTM
 UpBV = BondValue(B)
 B$YieldToMaturity = OriginalYTM - B$ChangeInYTM
 DownBV = BondValue(B)
 B$YieldToMaturity = OriginalYTM
 Num = log((DownBV - OriginalBV) - (OriginalBV - UpBV))
 Den = -log(OriginalBV) - 2.0*log(B$ChangeInYTM/100.0)
 EffConv = exp(Num + Den)
 return(EffConv)
}
 The final test program focuses on holding period return decomposition.

SRM UST Book Spreads Over CMT LSC Test.R (Selected Excerpts and Output)
We select various parameters related to the CMT curve and check the fit. As before, estimating static risk
measures numerically is straightforward.
BaseCurveMDLevel = function(B, LSC){
 OriginalLevel = LSC$Intercept
 OriginalBV = BondValueDF(B, LSC)
 LSC$Intercept = OriginalLevel + B$ChangeInYTM
 UpBV = BondValueDF(B, LSC)
 LSC$Intercept = OriginalLevel - B$ChangeInYTM
 DownBV = BondValueDF(B, LSC)
 LSC$Intercept = OriginalLevel
 BCMDLevel = (DownBV - UpBV)/(2.0*OriginalBV*(B$ChangeInYTM/100.0))
 return(BCMDLevel)
}

© 2023 Robert Brooks. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

5

Convexity requires some care. The log transform seems to reduce machine error.

LSC Convexity -- Level

BaseCurveCYLevel = function(B, LSC){
 OriginalLevel = LSC$Intercept
 OriginalBV = BondValueDF(B, LSC)
 LSC$Intercept = OriginalLevel + B$ChangeInYTM
 UpBV = BondValueDF(B, LSC)
 LSC$Intercept = OriginalLevel - B$ChangeInYTM
 DownBV = BondValueDF(B, LSC)
 LSC$Intercept = OriginalLevel
 TChange = (DownBV - OriginalBV) - (OriginalBV - UpBV)
 if(TChange > 0.00001){
 Num = log((DownBV - OriginalBV) - (OriginalBV - UpBV))
 Den = -log(OriginalBV) - 2.0*log(B$ChangeInYTM/100.0)
 BCCYLevel = exp(Num + Den)
 } else {
 BCCYLevel = 0.0
 }
 return(BCCYLevel)
}
With cross convexity we exploit the relationship with modified duration.

LSC Cross Convexity -- Level and Slope

BaseCurveCCLevelSlope = function(B, LSC){
 OriginalSlope = LSC$Slope
 LSC$Slope = OriginalSlope + B$ChangeInYTM
 UpV = BaseCurveMDLevel(B, LSC)
 LSC$Slope = OriginalSlope - B$ChangeInYTM
 DownV = BaseCurveMDLevel(B, LSC)
 LSC$Slope = OriginalSlope
 BCCCLevelSlope = (DownV - UpV)/(2.0*(B$ChangeInYTM/100.0))
 return(BCCCLevelSlope)
}

