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Module 7.2: Static Risk Management U. S. Treasuries 
R Commentary 

See module Ch 8.2 SRM US Treasuries.  
 
We comment on selections from three test programs along with associated other files. 
SRM Traditional UST Test.R (Selected Excerpts and Output) 
This program illustrates three bonds with identical characteristics except for coupon amount. The base bond 
is an actual bond with roughly 10 years to maturity and a stated coupon of 2.25%. We compare its sensitivity 
to a 1.125% coupon bond and a 3.375% coupon bond. This program follows closely with Module 4.1 with 
the addition of selected traditional duration and convexity measures. The core source code is the following 
for loop where the methods for various calculations are called. 
for(i in 1:NumberOfObservations){ 
  Y[i] <- LowerBound + (i-1)*StepSize 
  BONDInputData$YieldToMaturity = Y[i] 
  BONDInputData$CouponRate = originalCR 
  OBV[i] = BondValue(BONDInputData) #- AccruedInterest(BONDInputData) 
  ODuration[i] = Duration(BONDInputData) 
  OConvexity[i] = Convexity(BONDInputData) 
  # High Coupon   
  BONDInputData$CouponRate = HCoupon 
  HBV[i] = BondValue(BONDInputData) #- AccruedInterest(BONDInputData) 
  HDuration[i] = Duration(BONDInputData) 
  HConvexity[i] = Convexity(BONDInputData) 
  # Low Coupon 
  BONDInputData$CouponRate = LCoupon 
  LBV[i] = BondValue(BONDInputData) #- AccruedInterest(BONDInputData) 
  LDuration[i] = Duration(BONDInputData) 
  LConvexity[i] = Convexity(BONDInputData) 
  BONDInputData$CouponRate = originalCR 
} 
Note that the bond value could easily be adjusted to hold only the quoted bond price by extracting the 
accrued interest (currently commented out). Standard duration and convexity values are estimated based on 
their analytic expressions given in this module. 
# 
# Duration: Macaulay duration 
# 
Duration = function(B){ 
  with(B,{ 
    DV = 0.0 
    RemainingCoupons = CouponsRemaining(B) 
    ElapsedTime = FractionElapsed(B) 
    for(i in 1:RemainingCoupons){ 
      DV = DV + (i - ElapsedTime)*( (CouponRate/(Frequency*100.0))*Par ) / 
        ((1.0 + (YieldToMaturity/(Frequency*100.0)))^(i + 1 - ElapsedTime)) 
    } 
    DV = DV + ((RemainingCoupons - ElapsedTime) * Par) /  
      ((1.0 + (YieldToMaturity /  
      (Frequency*100.0)))^(RemainingCoupons + 1 - ElapsedTime)) 
    DV = DV / (Frequency*BondValue(B)) 
    return( DV )  
  }) 
} 
# 
# Convexity: Standard convexity 
# 
Convexity = function(B){ 
  with(B,{ 
    Convexity = 0.0 
    RemainingCoupons = CouponsRemaining(B) 
    ElapsedTime = FractionElapsed(B) 
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    for(i in 1:RemainingCoupons){ 
      Convexity = Convexity + ( (i + 1 - ElapsedTime)*(i - ElapsedTime) *  
        ( (CouponRate/(Frequency*100.0))*Par) ) / 
        ((1.0 + (YieldToMaturity/(Frequency*100.0)))^(i + 2 - ElapsedTime)) 
    } 
    Convexity = Convexity + ((RemainingCoupons + 1 - ElapsedTime) *  
      (RemainingCoupons - ElapsedTime) * Par) /  
      ((1.0 + (YieldToMaturity /  
      (Frequency*100.0)))^(RemainingCoupons + 2 - ElapsedTime)) 
    Convexity = Convexity/( (Frequency^2) * BondValue(B)) 
    return( Convexity )  
  }) 
} 
 We now turn to more advanced applications by tying UST bond values to the CMT curve fitted with the 
LSC model. We first explore a dataset comprising all traded UST notes and bonds. 
 
SRM UST Book Spreads Over CMT Test.R (Selected Excerpts and Output) 
In this test program, we explore the entire set of UST notes and bonds as provided by the Wall Street 
Journal. The data was taken manually from the Treasury markets data page and pasted into a spreadsheet. 
Prior to analyzing the effective duration and effective convexity of every bond, we select one to repeat the 
valuation analysis as review. The snippet of code presented here is just setting up the analysis. 
# 
# Fixed Parameters 
# 
inputFrequency <- 2 
inputPar <- 1000000.0 
inputChangeInYTM <- 0.01 # Effective duration and convexity 
RoughMaturity <- 10 # Years 
NFactors <- 4 # Number of factors including Level, 8 or less 
NBaseCurve <- 30 # Potential observation for every year for 30 years 
# Plot range information 
FixRange <- FALSE # For plots 
FRMax <- 3.1 # Plot bounds if fixed 
FRMin <- 2.4 
# Input files for U. S. Treasury bond and CMT rates 
USTFileName <- 'UST20200619.xlsx' 
CMTFileName <- 'CMT20200619.xlsx' # Should have same date as UST 
mTitle = "UST: June 19, 2020" # Date in graph title 
# Downloaded UST data stored with date appended: use for settlement 
SettlementDateMonth = 6     # Based on file name 
SettlementDateDay = 19 + 2  # Current practice is + 2 days settlement 
SettlementDateYear = 2020    
source("UST Book Inputs.R") # Access UST book 
source("SRM UST Functions.R") # UST functions (semi-annual only) 

Next we pick a bond with slightly more than 10 years to maturity and replicate selected valuation 
calculations. We provide a few lines next from the console window. 
> UST[SelectedBond,] # Console: Selected bond parameters 
    COUPON   ASKED ASKED.YIELD JMaturityDate MaturityDate   APrice 
260  5.375 148.106       0.665         25978    2/15/2031 148.3281 
… 
> # Calendar manipulations 
> N = CouponsRemaining(BONDInputData) 
> # ElapsedOutput contains fraction, JLastDate, JNextDate, and JCurrentDate 
> ElapsedOutput = Elapsed(BONDInputData) 
> # Number of Total Days 
> NTD <- ElapsedOutput$NextDate - ElapsedOutput$LastDate 
> # Number of Accrued Days since last semi-annual coupon 
> NAD <- ElapsedOutput$Fraction * NTD 
> # Fraction of coupon period that has elapsed already 
> f <- ElapsedOutput$Fraction 
> # Bond maturity, in years 
> Mat <- TimeToMaturity(BONDInputData) 
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> NAD; NTD; f; N; Mat 
[1] 127 
[1] 182 
[1] 0.6978022 
[1] 22 
[1] 10.6511 
> # Bond value given yield to maturity 
> MarketQuotedBondPrice <- inputBondPrice 
> MarketValueOfBond <- BondValue(BONDInputData) 
> AccruedInterestAmount <- AccruedInterest(BONDInputData) 
> ModelQuotedBondPrice <- MarketValueOfBond - AccruedInterestAmount 
> MarketValueOfBond; AccruedInterestAmount; 
[1] 1502281 
[1] 18753.43 
> ModelQuotedBondPrice; MarketQuotedBondPrice 
[1] 1483528 
[1] 1483281 
> # Yield to maturity given bond value 
> inputBondPrice = MarketQuotedBondPrice #Dollars:Quoted price w/o accrued interest 
> BONDInputData$BondPrice <- inputBondPrice 
> EstYieldToMaturity = YieldToMaturitySolver(BONDInputData) 
> EstYieldToMaturity; inputYieldToMaturity 
[1] 0.6669188 
[1] 0.665 
Based on the selected bond, we confirm that the bond quoted value is roughly equivalent to the quoted 
market price and the estimated yield to maturity is very close to the reported yield to maturity. Remember, in 
this calculation, there is always some estimation error due to the reported numbers being rounded. 
 We now seek to fit the LSC model to CMT rates. We deploy a four factor model where the scalar 
coefficients are the selected bond maturity for the first one (s1 = 10.65 years) and arbitrarily three years for 
the second one (s2 = 3 years). Generally, you want the scalars to be significantly different and focused on the 
portion of the maturities where maximal fit is important for your purposes. The scalars are set in the CMT 
Inputs.R file. The following are selected excerpts from the console related to fitting the CMT curve. 
> # Just quickly check input parameters for DiffCMTRates 
> x 
[1]  1.47 -1.29  0.00  0.00 
> NFactors 
[1] 4 
> Sc 
[1] 10.6511  3.0000 
> NBaseCurve 
[1] 30 
> MarketCMTRates 
 [1] 0.18 0.19 0.22   NA 0.33   NA 0.53   NA   NA 0.70   NA 
[12]   NA   NA   NA   NA   NA   NA   NA   NA 1.23   NA   NA 
[23]   NA   NA   NA   NA   NA   NA   NA 1.47 
> # Given coefficients for discount curve based on LSC,  
> #  estimate sum squared difference 
> Answer <- DiffCMTRates(x, NFactors, Sc, NBaseCurve, MarketCMTRates) 
> Answer 
[1] 0.381357 

Clearly, the function DiffCMTRates does not return zero; hence, the initial LSC parameters, x, are not the 
optimal ones. 
> # optimx R package provides minimization routine to select LSC coefficients  
> # to minimize squared differences #, all.methods=TRUE (uses all methods) 
> OptOutput <- optimx(par=x, fn=DiffCMTRates, NFac = NFactors, S = Sc,  
+   NCMTs = NBaseCurve, MSR = MarketCMTRates,  
+   method=c('nlminb'), control=list(save.failures=FALSE, maxit=2500))  
> # If 'nlminb' failed, then try a few more optimization routines,  
> #  quit when first one produces answer 
… 
The vector y contains the proposed optimal LSC parameters of the four factor model. 
> y 
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[1]  2.253396 -2.021602  0.315353 -1.164027 
> # Check to see if sum of squared errors is close to zero 
> Answer2 <- DiffCMTRates(y, NFactors, Sc, NBaseCurve, MarketCMTRates) 
> Answer2 
[1] 0.001759754 
Here we find the sum of squared errors to be very close to zero. With the fitted LSC model, we are ready to 
turn to estimating the spot rates and discount rates. 
SREstimates <- CMTRates(y, NFactors, Sc, NBaseCurve) 
SREstimates 
# Based on LSC parameters, y, and other inputs, NFactors, Sc, NBaseCurve,  
#  provide estimates of fitted discount rates 
DREstimates <- DiscountRates(y, NFactors, Sc, NBaseCurve) 
DREstimates 
Based on numerical approximation, effective duration is very easy to code. 
# 
# Effective Duration 
# 
EffectiveDuration = function(B){ 
  OriginalYTM = B$YieldToMaturity 
  OriginalBV = BondValue(B) 
  B$YieldToMaturity = OriginalYTM + B$ChangeInYTM 
  UpBV = BondValue(B) 
  B$YieldToMaturity = OriginalYTM - B$ChangeInYTM 
  DownBV = BondValue(B) 
  B$YieldToMaturity = OriginalYTM 
  EffDur = (DownBV - UpBV)/(2.0*OriginalBV*(B$ChangeInYTM/100.0)) 
  return( EffDur )  
} 
Based on numerical approximation, effective convexity is also very easy to code. Note the log transform is 
used because for some very small changes in yield, machine error can be significant. 
# 
# Effective Convexity 
# 
EffectiveConvexity = function(B){ 
  OriginalYTM = B$YieldToMaturity 
  OriginalBV = BondValue(B) 
  B$YieldToMaturity = OriginalYTM + B$ChangeInYTM 
  UpBV = BondValue(B) 
  B$YieldToMaturity = OriginalYTM - B$ChangeInYTM 
  DownBV = BondValue(B) 
  B$YieldToMaturity = OriginalYTM 
  Num = log((DownBV - OriginalBV) - (OriginalBV - UpBV)) 
  Den = -log(OriginalBV) - 2.0*log(B$ChangeInYTM/100.0) 
  EffConv = exp(Num + Den) 
  return( EffConv )  
} 
 The final test program focuses on holding period return decomposition. 
 
SRM UST Book Spreads Over CMT LSC Test.R (Selected Excerpts and Output) 
We select various parameters related to the CMT curve and check the fit. As before, estimating static risk 
measures numerically is straightforward.  
BaseCurveMDLevel = function(B, LSC){ 
  OriginalLevel = LSC$Intercept 
  OriginalBV = BondValueDF(B, LSC) 
  LSC$Intercept = OriginalLevel + B$ChangeInYTM 
  UpBV = BondValueDF(B, LSC) 
  LSC$Intercept = OriginalLevel - B$ChangeInYTM 
  DownBV = BondValueDF(B, LSC) 
  LSC$Intercept = OriginalLevel 
  BCMDLevel = (DownBV - UpBV)/(2.0*OriginalBV*(B$ChangeInYTM/100.0)) 
  return( BCMDLevel )  
} 
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Convexity requires some care. The log transform seems to reduce machine error. 
# 
# LSC Convexity -- Level 
# 
BaseCurveCYLevel = function(B, LSC){ 
  OriginalLevel = LSC$Intercept 
  OriginalBV = BondValueDF(B, LSC) 
  LSC$Intercept = OriginalLevel + B$ChangeInYTM 
  UpBV = BondValueDF(B, LSC) 
  LSC$Intercept = OriginalLevel - B$ChangeInYTM 
  DownBV = BondValueDF(B, LSC) 
  LSC$Intercept = OriginalLevel 
  TChange = (DownBV - OriginalBV) - (OriginalBV - UpBV) 
  if(TChange > 0.00001){ 
    Num = log((DownBV - OriginalBV) - (OriginalBV - UpBV)) 
    Den = -log(OriginalBV) - 2.0*log(B$ChangeInYTM/100.0) 
    BCCYLevel = exp(Num + Den) 
  } else { 
    BCCYLevel = 0.0 
  } 
  return( BCCYLevel )  
} 
With cross convexity we exploit the relationship with modified duration. 
# 
# LSC Cross Convexity -- Level and Slope 
# 
BaseCurveCCLevelSlope = function(B, LSC){ 
  OriginalSlope = LSC$Slope 
  LSC$Slope = OriginalSlope + B$ChangeInYTM 
  UpV = BaseCurveMDLevel(B, LSC) 
  LSC$Slope = OriginalSlope - B$ChangeInYTM 
  DownV = BaseCurveMDLevel(B, LSC) 
  LSC$Slope = OriginalSlope 
  BCCCLevelSlope = (DownV - UpV)/(2.0*(B$ChangeInYTM/100.0)) 
  return( BCCCLevelSlope )  
} 
 


