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Module 5.2

Geometric Brownian Motion 
Binomial Option Valuation Model

(GBM BOVM)
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Overview
nExplore multiplicative binomial model

n Geometric Brownian motion (GBM) in limit
n Recombining

n Incorporate dividends
nDigital options
nEuropean- and American-style options
nVariety of plots generated in R
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Central Finance Concepts
nGeometric Brownian motion (GBM)
nBinomial option valuation model (BOVM)
nOne- and two-period models
nGBM coherence conditions
nRole of dividends
nMultiperiod models
nGraphical illustrations
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GBM Binomial Framework
nMultiplicative
nRecombining
n Incorporate dividends (discrete and 
continuous)
nAddress early exercise with American-
style options
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Binomial Lattice Frameworks
nOne-period: Heuristic, intuitive, simple
nTwo-period: Introduce dynamic insights
nMultiperiod: Deployable model
nEuropean-style easier to deploy
nAmerican-style requires addressing 
potential early exercise
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GBM Coherence Conditions
nRequirements to converge to lognormal 
distribution
nSeeks to avoid arbitrage within sterile 
theoretical model
nDeeply useful when exploring alternative 
models to deploy in practice
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Dividends
nDiscrete dividends: Many lattices fail to 
recombine
nContinuous dividends: Unrealistic with 
stock options (pay four times per year)
nEscrow method: Bifurcate stock into two 
components

n Stock without PV dividends over option life
n PV dividends
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Multiperiod Models
nChallenge: 

n Probability of a single path tends to zero
n Number of potential paths tends to infinity

nSolution: Log transformation
nBackward recursion allows easy 
treatment of early exercise
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Selected Illustrations
nEuropean-style, with and without dividends

n Sensitivity to stock price and boundaries
n Time value sensitivity
n Plain vanilla and digital options
n Convergence with respect to number of steps
n Role of dividends

nAmerican-style contrasts
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Quantitative Finance Materials
nNotation
nOne period model

n Multiplicative
n Dividends

nTwo period model
n Recombining

nCoherence conditions
nMultiperiod models
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Notation
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Multiplicative Binomial Model
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Single Period Call Option
nSingle period
nBinomial process
nCreate hedged portfolio
nDerive call value
nNumerical example
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Creating the Hedged Portfolio
nLong h shares of stock, short 1 call

nSolve for h yielding identical future CFs
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Hedge Ratio to Valuation
nOptimal hedge ratio (Vu = Vd)

nValuation
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Single Period BOVM Example
nS=99, X=100, r=2%, T=1, u=1.25, d=0.8
n Intermediate calculations

n Su = uS = 1.25(99) = 123.75
n Sd = dS = 0.8(99) = 79.2
n cu = max(0, 123.75 – 100) = 23.75
n cd = max(0, 79.2 – 100) = 0
n hc = (cu – cd)/[S0(u – d)] 

    = (23.75 – 0)/(123.75 – 79.2) 
    = 23.75/44.55 = 0.5331
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Single Period BOVM Example
nS=99, X=100, r=2%, T=1, u=1.25, d=0.8
nNo arbitrage model solution
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Single Period BOVM Example
nS=99, X=100, r=2%, T=1, u=1.25, d=0.8
nEquivalent martingale solution
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Single Period Put Option
nSingle period
nBinomial process
nCreate hedged portfolio
nDerive put value
nNumerical example
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Creating the Hedged Portfolio
nBuy h shares of stock, buy 1 put

nSolve for h yielding identical future CFs
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nOptimal hedge ratio (Vu = Vd)

nValuation

Hedge Ratio to Valuation
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Single Period BOVM Example
nS=99, X=100, r=2%, T=1, u=1.25, d=0.8
n Intermediate calculations

n Su = uS = 1.25(99) = 123.75
n Sd = dS = 0.8(99) = 79.2
n pu = max(0,100 – 123.75) = 0
n pd = max(0,100 – 79.2) = 20.8
n hp = (pd – pu)/[S0(u – d)] 

    = (20.8 – 0)/(123.75 – 79.2) 
    = 20.8/44.55 = 0.4669
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Single Period BOVM Example
nS=99, X=100, r=2%, T=1, u=1.25, d=0.8
nNo arbitrage model solution
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Single Period BOVM Example
nS=99, X=100, r=2%, T=1, u=1.25, d=0.8
nEquivalent martingale solution
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Two Period BOVM Model
nMultiplicative
nRecombining
nTerminal values
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S=99, X=100, r=2%, T=1, u=1.25, d=0.8
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S=99, X=100, r=2%, T=1, u=1.25, d=0.8
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S=99, X=100, r=2%, T=1, u=1.25, d=0.8
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American-Style (AS) Options
nEarly exercise potential must be 
incorporated
nMethod of backward induction

n Start at terminal value
n Reason backward in time

nGoal is to establish sequence of optimal 
actions
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AS and Dividends
nMethods for handling dividends

n Yield method: Constant rate based on S 
n Escrow method: PVD placed in escrow

nEscrow method
n Model stock less PVD
n Assess early exercise decision at each node
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S=99, X=100, r=2%, T=1, u=1.25, d=0.8
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GBM Coherence Conditions
nNo arbitrage boundary condition

nProbability condition

nNo arbitrage condition

nVariance condition
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0 < d < erΔt < u

0 << π <<1
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Generic Options
n Indicator function:

nTerminal payoffs:
n Calls

n Puts
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ι = ιU =
+1 if call option Ot = ct( )
−1 if put option Ot = pt( )

⎧
⎨
⎪

⎩⎪

cT ≥ max 0,ST − X( )

pT ≥ max 0,X − ST( )
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u and d Conditions
nCondition for u:

nCondition for d:
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u = e
rΔt+ σ Δt

π 1−π( )

πe
σ Δt
π 1−π( ) + 1−π( )

d = erΔt

πe
σ Δt
π 1−π( ) + 1−π( )
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Multiperiod BOVM Definitions
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A ≡ σ Δt
π 1−π( ) Den ≡ πeA + 1−π( )

inf int j :u jd n− jS0 > X{ } > a =
− ln S
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Multiperiod BOVM
nGeneric version:

nBinomial summations:
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O0 = PV Eπ OT( )⎡⎣ ⎤⎦ = ιUS0Bin1,ιU − ιU Xe
−rT Bin2,ιU
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Log Transformation
nBinomial probabilities

n Number of paths explodes
n Probability of single path tends to zero

nLog transformation
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Pr j( ) = n!
j!(n− j)!

⎛
⎝⎜

⎞
⎠⎟
π j 1−π( )n− j

ln Pr j( )⎡⎣ ⎤⎦ = ln k( )
k= j+1

n

∑ − ln k( )
k=1

n− j

∑ + j ln π( )+ n− j( )ln 1−π( )
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American-Style Options
nEvaluate at each node

n Binomial model value

n Early exercise value

n Lower boundary value
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Oi, j
B = PVr ,i,Δt πOi+1, j+1 + 1−π( )Oi+1, j⎡⎣ ⎤⎦

Oi, j
X = max 0,ιU Si, j − X( )⎡

⎣
⎤
⎦

Oi, j
L = max 0,ιU Si, j − PVr ,i,n−i X( )⎡⎣ ⎤⎦{ }

Oi, j = max Oi, j
B ,Oi, j

X ,Oi, j
L⎡⎣ ⎤⎦
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Digital (Binary) Options 
nDigital payout based on terminal 
moneyness
nDigital BOVM

n Cash-or-nothing: Fixed cash amount
n Asset-or-nothing: Fixed amount of asset

n Indicator function
n I = 1 if condition is true
n I = 0 if condition is false
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Digital Options
nCash-or-nothing

nAsset-or-nothing
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cCoN = e−rT DP n!
j!(n− j)!
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Summary
nExplored multiplicative binomial model
nAddressed dividends
nDigital options
nEuropean- and American-style options
nVariety of plots generated in R
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Appendices
nAppendix A: GBM BOVM with and 
without dividends derivation
nAppendix B: One period arbitrage 
examples
nAppendix C: Dividends
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Dividends (Appendix C)
nContinuously compounded dividend yield, δ

n Vu = ueδΔtS0 and Vd = deδΔtS0

n Future value of the dividend payment is 
Du = u(eδΔt – 1)S0 and Dd = d(eδΔt – 1)S0

n Note that Du ≠ Dd

nDiscrete dollar terms, D
n Vu = uS0 + Du and Vd = dS0 + Dd

n Note that Du = Dd is possible
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Dividend Adjusted Parameters
nConditions:
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0 < d < e r−δ( )Δt < u

π = e
r−δ( )Δt − d
u − d

u = e
r−δ( )Δt+ σ Δt

π 1−π( )

πe
σ Δt
π 1−π( ) + 1−π( )

d = e r−δ( )Δt

πe
σ Δt
π 1−π( ) + 1−π( )
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Adjusted Single Period BOVM
nGeneral condition:

nNo arbitrage model:

nExpectations model
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O0 = PV Eπ OΔt( )⎡⎣ ⎤⎦

O0 = ΔS0 − PV ΔeδΔtuS0 −Ou( )

O0 = PV
e r−δ( )Δt − d
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Multiperiod BOVM
nGeneric version:

nAlternate version:
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O0 = PV Eπ OT( )⎡⎣ ⎤⎦ = ιUSe
−δT Bin1,ιU − ιU Xe

−rT Bin2,ιU

O0 = PVr
n!

j!(n− j)!
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r−δ( )T − d
u − d
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