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Module 5.4: Geometric Brownian Motion-Based Option Valuation Models 
Learning objectives 

• Explain how to value options based on the geometric Brownian motion 
• Review the standard assumptions, boundary conditions and sketch a derivation of the model 
• Review digital options and explain the relationship to standard option 

 
Executive summary 
We review the assumptions underlying the standard option valuation model proposed by Black, Scholes and 
Merton. We identify this model with geometric Brownian motion option valuation model (GBMOVM) to 
distinguish from arithmetic Brownian motion option valuation model (ABMOVM). Recall that GBM results 
in a lognormal terminal distribution whereas ABM results in a normal terminal distribution. Next, we review 
the boundary conditions based on static arbitrage take was extensively covered in Module 5.1. After 
reviewing one representation of the GBM option valuation model, we sketch out its derivation. Finally, we 
review digital options and related issues. 
 
Central finance concepts 
We introduce the key financial concepts of the GBMOVM and defer the technical details later in this 
module. 

GBM option valuation model 
There are several technical assumptions required for the GBMOVM to theoretically hold. The key 
assumptions include option are European-style, GBM, financing available at the risk-free interest rate, no 
market frictions, and constant volatility. Although in practice none of these assumptions are valid, still the 
GBMOVM is incredibly useful in providing guidance on a host of financial decisions, such as relative value 
(comparing one option with an alternative), future likelihoods (such as the probability of an option being in-
the-money), and sensitivities (such as the Greeks like delta that measures the sensitivity of the option value 
to the underlying instrument price). 
 Because options are European-style, we assume a continuous cash flow yield such as dividend yield. 
Discrete dividends can be handled with the escrow method. 
 Given the importance of option boundaries within the context of valuation, we provide a concise technical 
review of Module 5.1 for the purpose of aiding the development and testing of computerized GBMOVM 
applications. Figure 5.4.1 illustrates these boundary conditions as well as the option values based on the 
model presented below. 
 
Figure 5.4.1. GBMOVM option values along with boundary conditions 

  
 
A careful examination of the time value plots in Figure 5.4.2 highlights the assumed lognormal distribution 
with positive skewness and the fact that time value is identical for both call and put options. 
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Figure 5.4.2. GBMOVM time value illustration 

   
 
 The GBMOVM is presented below in several different ways to provide clarity in applications. Finally, the 
GBMOVM is derived using dynamic arbitrage that results in a solvable partial differential equation. 

GBMOVM applied to digital options 
Digital options are also known as binary options. The option payoff is either a fixed digital payout (DP) if the 
option expires in-the-money (Cash or Nothing, CoN) or a fixed number of units of the underlying (assumed 1 
unit) if the option expires in-the-money (Asset or Nothing, AoN).  
 As with plain vanilla options, digital options have boundary conditions. These technical boundary 
conditions are covered in extensive detail below. Any model developed to value digital options must 
converge to the appropriate upper and lower boundaries. 
 Interestingly, a plain vanilla option can be created synthetically with static arbitrage strategies from AoN 
and CoN digital options. Subject to certain constraints, a plain vanilla call option is equivalent to long a 
particular AoN call option and short a particular CoN call option. Similarly, a plain vanilla put option is 
equivalent to long a particular CoN put option and short a particular AoN put option. Thus, the digital option 
market is intrinsically linked to the plain vanilla market. 
 
Quantitative finance materials 
We now turn to addressing the technical aspects of the GBMOVM. 

GBM option valuation model 
GBMOVM assumptions1 
As with any model, the Black, Scholes and Merton option valuation model or GBMOVM is based on a set of 
assumptions, including 

• Standard finance presuppositions and assumptions apply (see Chapter 2) 
• Underlying instrument behaves randomly and follows a lognormal distribution (or follow geometric 

Brownian motion) 
• Risk-free interest rate exists, is constant, borrowing and lending allowed 
• Volatility of the underlying instrument’s continuously compounded rate of return is known, positive, 

and constant 
• No market frictions, including no taxes, no transaction costs, unconstrained short selling allowed, 

and continuous trading 
• Investors prefer more to less 
• Option are European-style (exercise available only at maturity) 
• Underlying instrument may pay a constant continuous cash flow yield (e.g., dividend yield) as well 

as possibly discrete cash flows (e.g., discrete dividends) 

 
1For more details, see Chance and Brooks (2013). 
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Underlying instrument cash flows 
The approach taken here is known as the escrow method. The escrow method first estimates all known future 
cash flows that are paid to owners of the underlying instrument over the life of the option being considered. 
These cash flows can be enumerated as discretely paid cash flows or continuously paid cash flows. 
 Continuously paid cash flows yield is a useful approximation for stock index options as they may contain 
hundreds of quarterly discrete dividend payments. 
 Once the future cash flows have been identified, the present value of these cash flows is estimated. The 
present value of all future cash flows, assumed to be dividends here, can be expressed generically as2 

 , (5.4.1) 

where S0 denotes the current price of the underlying instrument at time 0,  denotes the ith dividend paid at 

time ,  denotes the present value at time 0 of the ith dividend, T denotes the expiration of the 

option expressed in years, and  denotes the annualized, continuously compounded cash flow yield. 
 We define the underlying instrument value sans (without) these cash flows as 

 . (5.4.2) 

Thus, the underlying instrument value is decomposed into two components. For example, the market stock 
price ( ) is decomposed into the stock price sans present value of dividends ( ) and the present value of 

dividends ( ). 
 Recall that stock options are typically not adjusted for routine cash dividends. Hence, the terminal stock 
value should be based on the initial stock value sans dividends. 
Option boundary conditions review 
For more details, see Module 5.1. Most valuation models are limited to hold within some upper and lower 
boundaries. We generically represent the value of an option, call or put, as follows: 

 . (5.4.3) 

Where the indicator functions is expressed as 

 , (5.4.4) 

X denotes the strike price, and k denotes some unspecified discount rate. The value of the underlying 
instrument at time T equals to the value of the underlying instrument without cash flows as they have now all 
been paid. Hence, 

 . (5.4.5) 

Let a default-free, zero coupon, $1 par bond be expressed as 

 , (5.4.6) 

For stock options, the boundaries are as follows. 

 
2Typically, either continuous cash flows or discrete cash flows are modeled, not both. Modeling both poses 
some technical issues beyond the scope of our interest here. We represent both for simplicity of analysis 
later. 
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Option upper bound 
The upper boundary for options can be expressed as 

 . (5.4.7) 

Thus, the call upper bound is  and the put upper bound is . 
Option lower bound 
The lower boundary for options can be expressed as 

 . (5.4.8) 

Thus, the call lower bound is  and the put lower bound is . 
Proofs for these boundary conditions can be found in most introductory financial derivatives textbooks, such 
as Chance and Brooks (2013), as well as Module 5.1.  
GBM option valuation model (GBMOVM) 
Fischer Black and Myron Scholes (1973) along with Robert Merton (1973) developed a mathematical model 
for valuing financial options that are European-style. European-style options can only be exercised at the 
expiration of the option. Based on a set of restrictive assumptions, they derive the following valuation model 
(the continuously compounded dividend yield version): 

 , (5.4.9) 

where again the indicator functions is expressed as 

 , (5.4.10) 

 , (5.4.11) 

 , (area under the standard cumulative normal distribution up to d) (5.4.12) 

 , and (5.4.13) 

 . (5.4.14) 

If there is only a cash flow yield, then the call and put option equations can be expressed as 

  and (5.4.15) 

 . (5.4.16) 

Note here 

 , and (5.4.17) 

 . (5.4.18) 
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Recall the N(d) function was covered in detail in Module 3.2. 
Derivation of the call value based on the GBMOVM framework 
We briefly sketch the proof of the GBMOVM model. The underlying instrument is assumed to pay a 
continuous yield. Consider the following three steps: 

Step 1: Distribution of underlying instrument and call 
Step 2: Create arbitrage cash flow table and compute hedge ratio 
Step 3: Calculate option value 
 

Step 1: Distribution of stock and call 
Assume the stock price follows geometric Brownian motion, 

 . (5.4.19) 

Further, we know that C = C(S,t). Therefore, by Itô's lemma, we know the call price follows and Ito process 
of the form, 

 . (5.4.20) 

Step 2: Create arbitrage cash flow table and compute hedge ratio 

Consider selling 1 call and entering  stock (positive number indicates purchase). Denote the portfolio as 

P, the value of the portfolio is 

 . (5.4.21) 

A small change in time results in a change in the portfolio value, 

 . (5.4.22) 

Note that q denotes the dividend yield. Substituting from step 1 for dC and dS, we have 

  or (5.4.23) 

 .  (Hedged Portfolio) (5.4.24) 

Note that for small changes in the portfolio, the portfolio is risk-free (there is no dw term). Therefore the 
portfolio should earn the risk-free rate, r. That is, 

   (Risk Free Portfolio) (5.4.25) 

Step 3: Calculate option value 
Combining the results of Hedged Portfolio equation and Risk Free Portfolio equation above, we have 

 . (5.4.26) 

Cancelling dt and rearranging, we have the standard Black-Scholes-Merton partial differential equation 
(BSM PDE) 
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∂ t

+ 1
2
σ 2S 2 ∂

2C
∂S 2

⎛
⎝⎜

⎞
⎠⎟
dt + ∂C

∂S
σ Sdw

∂C
∂S

Π = −C + ∂C
∂S
S

dΠ = −dC + ∂C
∂S
dS + q ∂C

∂S
Sdt

dΠ = − µS ∂C
∂S

+ ∂C
∂ t

+ 1
2
σ 2S 2 ∂

2C
∂S 2

⎛
⎝⎜

⎞
⎠⎟
dt − ∂C

∂S
σ Sdw+ ∂C

∂S
µSdt +σ Sdw( )+ q ∂C∂S Sdt

dΠ = − ∂C
∂ t

+ 1
2
σ 2S 2 ∂

2C
∂S 2

− q ∂C
∂S
S

⎛
⎝⎜

⎞
⎠⎟
dt

dΠ = rΠdt = r −C + ∂C
∂S
S

⎛
⎝⎜

⎞
⎠⎟
dt

− ∂C
∂ t

+ 1
2
σ 2S 2 ∂

2C
∂S 2

− q ∂C
∂S
S

⎛
⎝⎜

⎞
⎠⎟
dt = r −C + ∂C
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 .  (BSM PDE) (5.4.27) 

The BSM PDE is a second order, partial differential equation which when combined with the boundary 
condition, 

 .  (Call Boundary Condition) (5.4.28) 

is the Black-Scholes-Merton differential equation. This equation was originally solved by transforming it 
into a representation that is isomorphic to the well-known heat transfer equation in a half space. However, 
solutions to problems of this nature are unique. Therefore once you have a proposed solution all you have to 
do is check to be sure the BSM PDE and Call Boundary Condition equations are satisfied and you are 
finished. The GBMOVM can be represented as 

 ,  (GBMOVM) (5.4.29) 

where  is the area under the standard cumulative normal distribution up to d (see the table nearby), or 

 , (5.4.30) 

 , (5.4.31) 

 . (5.4.32) 

It can be shown, based on the GBMOVM, that3 

 ,  (Delta) (5.4.33) 

 .  (Gamma) (5.4.34) 

 , and (Theta) (5.4.35) 

 .  (Probability Density Function) (5.4.36) 

Substituting the Delta, Gamma, and Theta equations into the BSM PDE equation will result in the 
GBMOVM equation along with satisfying the Call Boundary Condition equation is sufficient to prove that it 
is the unique solution. 

GBMOVM applied to digital options 
Digital options are also known as binary options. The option payoff is either a fixed digital payout (DP) if the 
option expires in-the-money (Cash or Nothing, CoN) or a fixed number of units of the underlying (assumed 1 
unit) if the option expires in-the-money (Asset or Nothing, AoN). Using the indicator function, we note the 
payoff at expiration is 

  or (5.4.37) 

 
3See Module 9.3 for the technical derivations of these derivatives (also known as Greeks). 
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 . (5.4.38) 

The resulting digital option payoffs can alternatively be expressed as  

 ,  (Digital asset-or-nothing call option) (5.4.39) 

 , (Digital asset-or-nothing put option) (5.4.40) 

 , (Digital cash-or-nothing call option) (5.4.41) 

 . (Digital asset-or-nothing put option) (5.4.42) 

Digital option upper bound 
The digital option upper bounds can be expressed as 

  and (5.4.43) 

 . (5.4.44) 

The upper boundary for plain vanilla options when X = DP can be expressed as 

 . (5.4.45) 

Thus, the AoN upper bound is  and the CoN upper bound is . 
Digital option lower bound 
The digital option lower bounds is a bit more difficult to verify. Due to limited liability, we know 

  and (5.4.46) 

 . (5.4.47) 

We seek, however, the highest lower bound. The lower boundary for plain vanilla options when  
X = DP can again be expressed as 

 . (5.4.48) 

Thus, the plain vanilla call lower bound is  and the plain vanilla put lower bound is 

 as demonstrated next. 
European-style plain vanilla option lower boundary condition  
The lower boundary condition for a European-style option: (r > 0) 

 . (5.4.49) 

The technique consistent with arbitrage is, in mathematical terms, proof by contradiction. Assuming the 
opposite, 

 . (5.4.50) 

CoN ST ,T ;ιU ,X ,T ,r,σ ,DP( ) = 1ιUST >ιU X DP

CAoN ,T =
0       ST ≤ X

ST      ST > X

⎧
⎨
⎪

⎩⎪

PAoN ,T =
ST       ST ≤ X

0        ST > X

⎧
⎨
⎪

⎩⎪

CCoN ,T =
0        ST ≤ X

DP     ST > X

⎧
⎨
⎪

⎩⎪

PCoN ,T =
DP      ST ≤ X

0         ST > X

⎧
⎨
⎪

⎩⎪

AoN S0 ,0;ιU ,X ,T ,r,σ( ) ≤ ′S0
CoN S0 ,0;ιU ,X ,T ,r,σ ,DP( ) ≤ BrDP

O0 ≤max ιU ′S0 ,−ιU BrDP( )
′S0 BrDP

AoN S0 ,0;ιU ,X ,T ,r,σ( ) ≥ 0
CoN S0 ,0;ιU ,X ,T ,r,σ ,DP( ) ≥ 0

O0 ≥max 0,ιU ′S0 − BrDP( )⎡⎣ ⎤⎦

max 0, ′S0 − Br X( )
max 0,Br X − ′S0( )

O0 ≥max 0,ιU ′S0 − Br X( )⎡⎣ ⎤⎦

O0 <max 0,ιU ′S0 − Br X( )⎡⎣ ⎤⎦
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Note if , then C < 0 and thus buy option and receive money—a case of disequilibrium. If 

, then 

 . (5.4.51) 

Rearranging by moving every term to the greater than side, 

 . (5.4.52) 

Substituting for  [recall ], 

 , (5.4.53) 

or 

 . (5.4.54) 

Table 5.4.1 presents the cash flow table below illustrates arbitrage. 
 
Table 5.4.1. Cash flow table illustrating influence of dividends 

Strategy Today D1 D2 … DN At Expiration 
Stock  – D1 – D2  – DN – ST 

X Financing      + X 
CF Financing 

 
+ D1 + D2  + DN  

Buy option       
Net Net0 > 0 0 0  0 NetT  0 

 
Recall 

 . (5.4.55) 

Thus, 

 . (5.4.56) 

For a call option, 

 . (5.4.57) 

Thus, when ST < X, then NetT = X – ST > 0 and when ST  X, then NetT = 0. 
For a put option, 

 . (5.4.58) 

Thus, when ST  X, then NetT = ST – X > 0 and when ST < X, then NetT = 0. 
Therefore, the cash flow table above evidences an arbitrage opportunity. Arbitrage opportunities should not 
exist in equilibrium; hence, the contradictory assumption is false, validating the original claim. 

ιU ′S0 − Br X( ) ≤ 0
ιU ′S0 − Br X( ) > 0

O0 < ιU ′S0 − Br X( )

0 < ιU ′S0 − ιU Br X −O0

′S0 ′S0 = BδS0 − PVτ i Di( )
i=1

N

∑

0 < ιU BδS0 − PVτ i Di( )
i=1

N

∑⎡

⎣
⎢

⎤

⎦
⎥ − ιU Br X −O0

0 < ιU BδS0 − ιU PVτ i Di( )
i=1

N

∑ − ιU Br X −O0

ιU BδS0 ιU ιU ιU ιU
−ιU Br X ιU

−ιU PVτ i Di( )
i=1

N

∑ ιU ιU ιU

−O0 +OT
≥

OT = max 0,ιU ST − X( )⎡⎣ ⎤⎦

NetT = OT − ιU ST − X( ) = max 0,ιU ST − X( )⎡⎣ ⎤⎦ − ιU ST − X( )

NetT = max 0,ST − X( )− ST − X( )
≥

NetT = max 0,X − ST( )− X − ST( )
≤
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Selected musing on digital option boundaries 
Assuming X = DP, 

 . (5.4.59) 

Thus, 

  (5.4.60) 

and 

 . (5.4.61) 

Recall from Equation (5.4.9), 

 . (5.4.62) 

Thus,  

  and (5.4.63) 

 . (5.4.64) 

We turn now to review selected R code. 
 
Summary 
We reviewed the assumptions underlying the standard option valuation model proposed by Black, Scholes 
and Merton (or GBMOVM) to distinguish from ABMOVM. GBM results in a lognormal terminal 
distribution whereas ABM results in a normal terminal distribution. Next, we reviewed the boundary 
conditions based on static arbitrage take was extensively covered in Module 5.1. After reviewing one 
representation of the GBM option valuation model, we sketch out its derivation. Finally, we reviewed digital 
options and related issues. 
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