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Module 5.5

Arithmetic Brownian Motion 
Option Valuation Model

(ABMOVM)
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Overview
nReview assumptions of ABMOVM
nExplore role of dividends
n Identify different representations of ABMOVM
nDerive the ABMOVM
nReview selected plots
nCompare and contrast GBMOVM and 
ABMOVM
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Central Finance Concepts
nABMOVM or GBMOVM

n Contrast
n Historical review
n BSMOVM
n Key issues

nEmpirical evidence
nLimited liability issue
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ABMOVM or GBMOVM
nGBMOVM deeply embedded in practice
nGBMOVM deeply flawed

n Lognormal distribution (portfolios intractable)
n Probability(ST = 0) = 0

nABMOVM easily address GBMOVM flaws
n Normal distribution (portfolios tractable)
n Probability(ST <= 0) > 0
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Historical Review

nBachelier (1900) – ABMOVM (arithmetic drift)
nKruizenga (1952) – foundation of delta 
hedging, empirical support for ABMOVM
nOsborne (1959) – detailed statistical analysis, 
could have supported either ABM or GBM, 
gave early support for GBM, but study deeply 
flawed
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Early GBM-Based Models
nSprenkle (1961) – argues negative stock 
prices unwarranted, hence GBMOVM
nAlexander (1961) – fat tails overshadows 
any need to distinguish between ABM/GBM
nBoness (1964) – early GBMOVM
nSamuelson (1965) – coined “geometric 
Brownian motion”, call option cannot violate 
upper bound
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BSMOVM
nBlack and Scholes (1972, 1973)

n Continuous rebalancing
n No risk adjustment
n Over (under) priced high (low) variance stocks

nMerton (1973)
n Rational boundaries
n Partial differential equation solution
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Zero Value Issue
nBankruptcy rate = 0.7% per year
nMany underlying instruments can and do 
have negative values

n Interest rates
n Spreads (crack, crush, and various basis)
n Measurement data (temperature)

nOptions in France could have negative 
strike prices
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Zero Value Issue
nCommon stock

n Unincorporated assets
n Zero strike put option

nABMOVM handles negative values 
easily

n Estimate probability of zero or below
n Quantify economic value of limited liability
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Multiple Risk Factors
nChief Risk Officer’s task

n Identify key set of risk factors
n Map each balance sheet item to these factors
n ABM well suited

nGBM is not well suited for multiple factors

© Financial Risk Management, LLC 10

dS = µ S ,t( )dt + σ j t( )dwj
j=1

NF

∑

dS = µ S ,t( )dt + σ j t( )Sdwj
j=1

NF

∑

10

Portfolio Aggregation
nMultifactor ABM-based stock value

nPortfolio of stocks

nDiffusion of portfolio
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Greeks (see Module 8.3, 8.4)
nModel Greeks based on empirical 
observations

n Crash of October 1987, BSM suffered a permanent 
loss of confidence 

n Implied volatility surface emerged
n No unanimity of opinion on best model
n Best model is one that leads to best decision-

making
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Relative or Absolute Risk
nExample: $100 stock falls to $50

n Based on bad news
n Relative volatility implies lower absolute risk
n Absolute volatility implies higher relative risk

n Based on 2 for 1 stock split
n Relative volatility automatically handles 
n Absolute volatility must divide by 2

nGBM ignores the leverage effect of 
falling prices
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Extreme Volatilities
nLognormal

n Mean: exp(μ + σ2/2)
n Median: exp(μ)
n Mode: exp(μ – σ2)

nNormal
n Mean = Median = Mode = μ

nHigh volatilities results in unstable 
lognormal distribution 
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Binomial Convergence
nGBMOVM

n Recombining
n Multiplicative

nABMOVM
n Recombining
n Additive

nEither model can handle early exercise
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Homogeneity of Degree 1
nGBMOVM with S and X

n Stock splits automatically handled
n 2S, 2X implies 2C and 2P

nABMOVM with S, X and σ
n Stock splits must adjust σ
n 2S, 2X, 2σ implies 2C and 2P
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Empirical Evidence
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Log Transform of Time Value
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Analysis of Slopes
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H0: Slope Diff > 0
       (under GBM)
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Analysis of Implied Volatility
ABM % Improvement Over GBM
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ABMOVM’s Rebuttal
Addressing Limited Liability 
nSUL – underlying instrument without LL
nS = SLL – underlying instrument with LL
nSLL = SUL + P(S,X = 0) 
nExample: SUL = $10, σA = $30, T – t = 
1.0, r = 5% and 𝛿 = 0% 

n P(S,X = 0) = $7.35
n SLL = SUL + P(S,X = 0) = $17.35
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Example
nSUL=$10; X=$10; T–t=1; r=5%; σUL=$30

n C = $11.92; P = $11.43
n Apparent violation of upper bounds

nSLL=$17.35 [P(SUL,X=0)=$7.35]
n X=$10 Call: Short X=0 put and long X=$10 

call with cost of $4.57 
n X=$10 Put: Bear spread (Short X=0 put and 

long X=$10 put) with cost of $4.08
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Addressing Limited Liability 
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Addressing Limited Liability 
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Addressing Limited Liability 
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Limited Liability
nSUL – stock with unlimited liability
nSLL – stock with limited liability

n SLL = SUL + P(SUL,X=0)
n GBM: SLL = SUL or P(SUL,X=0) = 0
n ABM: P(SUL,X=0) > 0 or SLL > SU

nWhen SUL/σ < 3.1 => P(SUL,X=0) < 0.01
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Quantitative Finance Materials
nReview key assumptions
n Introduce ABMOVM
nDividends
nDerive ABMOVM
n Illustrative graphs
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ABMOVM Key Assumptions
nTerminal distribution is normal
nRisk-free rate is constant, borrowing and 
lending allowed
nVolatility of the underlying instrument’s 
annualized dollar change is known, 
positive, and constant
nEuropean-style options only

© Financial Risk Management, LLC 29

29

Dividends (Same as GBM)
nEscrow method assumed
nAll dividends over option life extracted

nUnderlying instrument sans dividends
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ABMOVM
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Dividend Yield Only
nCall model

nPut model
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Derivation of ABMOVM
nArithmetic Brownian motion with 
geometric drift

n Itô’s lemma, C(S,t),
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Risk-free portfolio design
nSell 1 call and buy delta stock

nHedged portfolio result (SFDR)

nRisk free growth implied
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ABM PDE
nABM partial differential equation

nBoundary condition
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Summary
nReview assumptions of ABMOVM 

n Normal distribution
n Arbitrage (SFDR)

nExplored role of dividends
n Identified different representations of 
ABMOVM
nDerived the ABMOVM
nReviewed selected plots
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