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Module 5.7: Geometric Brownian Motion-Based  
Compound Option Valuation Models 

Learning objectives 
• Explain how to value compound options based on the geometric Brownian motion 
• Review the compound option assumptions and boundary conditions 

 
Executive summary1 
We review the assumptions underlying the compound option valuation model proposed by Geske (1979) and 
extended by Brooks (2019). Geske’s model is based on the underlying instrument following geometric 
Brownian motion (GBM).2 Brooks provides an extensive and detailed derivation along with extending the 
model to handle both cash flows on the underlying instrument as well as cash flows on the underlying option. 
Next, we review the compound option boundary conditions based on static arbitrage. We review one 
representation of the GBM compound option valuation model. Finally, the R code is discussed. 
 
Central finance concepts 
The first known use of the phrase “compound options” in a financial context is found in The Bankers 
Magazine (Volume 59) published in 1895. The phrase “compound options” is found in the definition of 
options. Compound options in the late 1800s and early 1900s denoted merely complex option-based 
strategies, such as purchasing both a call and a put, purchasing the underlying along with purchasing a call 
option (call of more), or purchasing the underlying along with purchasing a put option (put of more). Charles 
Castelli describes call of mores and put of mores in detail in this 1877 book titled, The theory of “options” in 
stock and shares. 
 Black and Scholes (1973) appear to have coined the phrase “compound option” in the context of modern 
option theory. They note, “If the company has coupon bonds rather than pure discount bonds out- standing, 
then we can view the common stock as a ‘compound option.’ The common stock is an option on an option on 
. . . an option on the firm. After making the last interest payment, the stockholders have an option to buy the 
company from the bondholders for the face value of the bonds. Call this "option 1." After making the next-
to-the-last interest payment, but before making the last interest payment, the stockholders have an option to 
buy option 1 by making the last interest payment. Call this "option 2." Before making the next-to-the-last 
interest payment, the stock- holders have an option to buy option 2 by making that interest payment. This is 
"option 3." The value of the stockholders' claim at any point in time is equal to the value of option n + 1, 
where n is the number of interest payments remaining in the life of the bond” (651-652) 
 Geske (1979) provides the first detailed treatment of modern compound options. He specifically focuses 
on the compound option related to stock and the underlying firm. Rubinstein (1991) generalizes Geske’s 
model for other compound options as well as dividends on the underlying instrument, but not dividends on 
the underlying option. We now introduce several basic concepts related to compound options.  

Compound option basics 
A compound option is an option on an option. Figure 5.7.1 illustrates three important dates for compound 
options in calendar time. 
 

 
1This module is based on Brooks (2019). 
2There is an arithmetic Brownian motion version being developed but will not be covered in this book. 
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Figure 5.7.1. Three Important Dates for Compound Options with Notation 

 
 
 There are four different types of compound options based on whether the underlying option is a call or put 
as well as whether the option on the underlying option is a call or put. Thus, we have call on call (cacall), call 
on put (caput), put on call (pucall), and put on put (puput). We will introduce generic notation to present on 
single model that encapsulates all four types. 
 Based on the R code provided, several graphs are generated. Figure 5.7.2 illustrates the compound option 
values along with boundaries for a particular set of input parameters identified in the footer of each plot. 
 
Figure 5.7.2 Compound Option Values with Boundary Conditions 

   

   
 
We also produce time value plots in Figure 5.7.3 to illustrate the influence of the lognormal distribution 
assumption. 
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Figure 5.7.3 Compound Option Time Values 

   

   
 
Quantitative finance materials 
We now examine the technical details of compound options. 

Compound option basics 
A compound option is an option on an option. Thus, for European-style compound options there are two 
expiration dates, t < T1 < T2, where t denotes the valuation date, T1 denotes the compound option’s expiration 
date and T2 denotes the underlying option’s expiration date, where dates are reported in fraction of a year. 
There are also two strike prices, XC and XU, where XC is the strike price of the compound option and XU is the 
strike price of the underlying option.  
 We assume the strike prices are positive and 0 < XC and 0 < XU. Therefore, the payoffs on the underlying 
options at maturity (T2) are: 

   (Plain vanilla call option) (5.7.1) 

   (Plain vanilla put option) (5.7.2) 

Thus, the plain vanilla call and put option values are observed at time T2 for the underlying instrument S with 
strike price X2 and the option matures at time T2. Therefore, the payoff on the compound option at maturity 
(T1) is: 

  (Call on call or Cacall) (5.7.3) 

  (Call on put or Caput) (5.7.4) 

  (Put on call or Pucall) (5.7.5) 

  (Put on put or Puput) (5.7.6) 

cT2 S ,XU ,T2( ) = max 0,ST2 − XU( )
pT2 S ,XU ,T2( ) = max 0,XU − ST2( )

CoCT1 c S ,XU ,T2( ),XC ,T1⎡⎣ ⎤⎦ = max 0,cT1 S ,XU ,T2( )− XC⎡
⎣

⎤
⎦

CoPT1 p S ,XU ,T2( ),XC ,T1⎡⎣ ⎤⎦ = max 0, pT1 S ,XU ,T2( )− XC⎡
⎣

⎤
⎦

PoCT1 c S ,XU ,T2( ),XC ,T1⎡⎣ ⎤⎦ = max 0,XC − cT1 S ,XU ,T2( )⎡
⎣

⎤
⎦

PoPT1 p S ,XU ,T2( ),XC ,T1⎡⎣ ⎤⎦ = max 0,XC − pT1 S ,XU ,T2( )⎡
⎣

⎤
⎦
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The decision to exercise a compound option depends on whether the compound option is in the money. 
Specifically, whether the underlying option’s value at time T1 is greater than its strike price. The underlying 
option’s value depend on the underlying instrument’s value, , and time to expiration, T2 – T1. 
Compound option valuation model notation 
Due to the sheer volume of variables, we document the notation here: 

 – denotes indicator function (= +1 if compound option is call and –1 if compound option is put), 
 – denotes indicator function (= +1 if underlying option is call and –1 if underlying option is put), 

t – denotes current calendar time expressed as a fraction of a year from some 0 point, e.g., 0 years, 
T1 – denotes calendar time when compound option expires expressed as a fraction of a year from some 0 

point, e.g., 0.5 years, 
T2 – denotes calendar time when underlying option expires expressed as a fraction of a year from some 0 

point, e.g., 1.0 year, 
 – Underlying instrument value at time t, 

 – Annualized standard deviation of continuously compounded rates of return of the underlying 
instrument,  

 – Annualized continuous risk free interest rate, 
 – Annualized continuous cash flow paid to underlying instrument holder (e.g., stock dividend yield), 
 – Annualized continuous cash flow paid to compound option holder (e.g., when stock is the 

underlying option on the firm, then this stock pays dividends), 
XU – Strike price for underlying option, 

 – Compound option strike price, 

 – Underlying option value at time t for T2 maturity (parameters suppressed 
where possible),  

 – European call option on underlying instrument, S, observed at time t, with strike 
price XU, maturing at time T2,  

 – European put option on underlying instrument, S, observed at time t, with strike 
price XU, maturing at time T2, 

 – Zero coupon, discount bond with $1 par, observed at time t, maturing at time T, with 
discount rate x,  

 – cacall, call on call compound option with strike price XC, maturing 
at time T1, 

 – caput, call on put compound option with strike price XC, maturing 
at time T1, 

 – pucall, put on call compound option with strike price XC, maturing 
at time T1, and 

 – puput, put on put compound option with strike price XC, maturing 
at time T1. 

 
GBM COVM assumptions 
As with any model, the GBM compound option valuation model is based on a set of assumptions, including 

• Standard finance presuppositions and assumptions apply (see Chapter 2) 
• Underlying instrument behaves randomly and follows a lognormal distribution (or follow geometric 

Brownian motion) 

ST1

ιC
ιU

St
σ 2

r
δ
q̂

XC
O S ,t;ιU ,XU ,T2 ,σ ,r,δ , q̂( )

ct = ct S ,XU ,T2( )

pt = pt S ,XU ,T2( )

Bt ,T ,x = e
− x T−t( )

CoCt = CoCt ct S ,XU ,T2( ),XC ,T1⎡⎣ ⎤⎦

CoPt = CoPt pt S ,XU ,T2( ),XC ,T1⎡⎣ ⎤⎦

PoCt = PoCt ct S ,XU ,T2( ),XC ,T1⎡⎣ ⎤⎦

PoPt = PoPt pt S ,XU ,T2( ),XC ,T1⎡⎣ ⎤⎦
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• Risk-free interest rate exists, is constant, borrowing and lending allowed 
• Volatility of the underlying instrument’s continuously compounded rate of return is known, positive 

and constant 
• No market frictions, including no taxes, no transaction costs, unconstrained short selling allowed, 

and continuous trading 
• Investors prefer more to less 
• Option are European-style (exercise available only at maturity) 
• Underlying instrument and underlying option may pay a continuous cash flow yield 

 
Compound option boundary conditions and parities 
We briefly review the appropriate compound option boundary conditions and parities followed by selected 
proofs. The following boundary conditions hold for the underlying options: 

Underlying call lower bound: , (5.7.7) 

Underlying call upper bound: ,  (5.7.8) 

Underlying put lower bound: , and (5.7.9) 

Underlying put upper bound: .  (5.7.10) 

 The following boundary conditions hold for compound options: 

Call on call lower bound: , (5.7.11) 

Call on call upper bound: ,  (5.7.12) 

Call on put lower bound: , (5.7.13) 

Call on put upper bound: ,   

Put on call lower bound: , (5.7.14) 

Put on call upper bound: ,  (5.7.15) 

Put on put lower bound: , and (5.7.16) 

Put on put upper bound: .  (5.7.17) 

 Important parities related to the univariate and bivariate normal cumulative distribution function are as 
follows: 

 , (5.7.18) 

 , (5.7.19) 

 , and (5.7.20) 

 . (5.7.21) 

In our notation, the underlying option put-call parity is:3 

 
3Note that option yields would be expected to be different between calls and puts within the context of 
common stocks as equity, although puts in this context are difficult to interpret. Within the context of the 
generic compound options model, one could easily have yield paying calls and puts. 

ct ≥max 0,Bt ,T2 ,δSt − Bt ,T2 ,rc XU( )
ct ≤ Bt ,T2 ,δSt

pt ≥max 0,Bt ,T2 ,rc XU − Bt ,T2 ,δSt( )
pt ≤ Bt ,T2 ,rc XU

CoCt ≥max 0,Bt ,T1,q̂ct − Bt ,T1,rc XC( )
CoCt ≤ Bt ,T1,q̂ct

CoPt ≥max 0,Bt ,T1,q̂ pt − Bt ,T1,rc XC( )
CoPt ≤ Bt ,T1,q̂ pt

PoCt ≥max 0,Bt ,T1,rc XC − Bt ,T1,q̂ct( )
PoCt ≤ Bt ,T1,rc XC

PoPt ≥max 0,Bt ,T1,rc XC − Bt ,T1,q̂ pt( )
PoPt ≤ Bt ,T1,rc XC

N2 d1,d2;ρ( ) = N1 d1( )− N2 d1,−d2;−ρ( )
N2 d1,d2;ρ( ) = N1 d2( )− N2 −d1,d2;−ρ( )

N2 d1,d2;ρ( ) = N1 d1( )+ N1 d2( )−1+ N2 −d1,−d2;ρ( )
N1 −d( ) = 1− N d( )
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 . (5.7.22) 

In our notation, the compound option put-call parity relations include: 

 , (5.7.23) 

 , and (5.7.24) 

 . (5.7.25) 

 The proofs for selected boundary conditions, one parity, and the valuation model can be found in Brooks 
(2019). Next, we present the compound option valuation model. 
Compound option valuation model 
Compound option pricing model (CO) observed at time t under geometric Brownian motion based on an 
underlying instrument ( ) with the compound option exercise price ( ) expiring at time 2 ( ) and the 
underlying option exercise price ( ) expiring at time 1 ( ) can be expressed as 

 , (5.7.26) 

where indicator functions denote 

  and (5.7.27) 

 . (5.7.28) 

Recall a default-free, zero coupon, $1 par bond be expressed as 

 , (5.7.29) 

and the bivariate cumulative standard normal distribution 

 . (5.7.30) 

Using a generic time to maturity, T, the periodic standard deviation are 

 . (5.7.31) 

The correlation coefficient used in the bivariate distribution is 

 , (5.7.32) 

and thus 

Bt ,T2 ,q̂c ct − Bt ,T2 ,q̂p pt = Bt ,T2 ,δSt − Bt ,T2 ,rc XC

CoCt − PoCt = Bt ,T1,q̂ct − Bt ,T1,rc XC
CoPt − PoPt = Bt ,T1,q̂ pt − Bt ,T1,rc XC

CoCt − PoCt − CoPt − PoPt( ) = Bt ,T2 ,δSt − Bt ,T2 ,rc XU

St XC T1
XU T2 > T1

CO S ,t,T1,T2 ,ιC ,ιU( ) = ιCιUStBt ,T2 ,δBT1,T2 ,− q̂N2 ιCιUd11,ιUd12;ιCρ( )
−ιCιU XU Bt ,T2 ,r BT1,T2 ,− q̂N2 ιCιUd21,ιUd22;ιCρ( )− ιC XCBt ,T1,r N ιCιUd21( )

ιC =
+1 if compound call option
−1 if compound put option 

⎧
⎨
⎪

⎩⎪

ιU =
+1 if underlying call option
−1 if underlying put option 

⎧
⎨
⎪

⎩⎪

Bt ,T ,r = e
−r T−t( )

N2 a,b;ρ( ) ≡
exp −

z1
2 − 2ρz1z2 + z2

2

2 1− ρ2( )
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

2π 1− ρ2
dz1 dz2

−∞

b

∫
−∞

a

∫

σ t ,T =σ T − t

ρ =
T1 − t

T2 − t
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 . (5.7.33) 

Let  be defined such that underlying option is at-the-money or 

 , (5.7.34) 

where 

 , (5.7.35) 

 , and (5.7.36) 

 . (5.7.37) 

Let dij denote the upper bound of the bivariate normal cumulative distribution function where i = 1, 2 denotes 
whether the volatility term is added (i = 1) or subtracted (i = 2) and j = 1, 2 denotes whether the evaluation is 
S* at T1 (j = 1) or XU at T2 (j = 2). We define 

 , (5.7.38) 

 , (5.7.39) 

 , and (5.7.40) 

 . (5.7.41) 

We illustrate the proof of this model with the partial differential equation and the appropriate partial 
derivatives in Module 9.5.  
 
Summary 
We reviewed the assumptions underlying the compound option valuation model proposed by Geske (1979) 
and extended by Brooks (2019). This model is based on the underlying instrument following GBM. Details 

1− ρ2 =
T2 −T1
T2 − t

ST1
*

ιUST1
* BT1,T2 ,δ −q̂N1 ιUd1,T1,T2

*( )− ιU XU BT1,T2 ,r−q̂N1 ιUd2,T1,T2*( )− XC = 0

d2,T1,T2
* =

ln
ST1
* BT1,T2 ,−(r−δ )
XU

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
−
σ T1,T2

2

2

σ T1,T2

d1,T1,T2
* =

ln
ST1
* BT1,T2 ,−(r−δ )
XU

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
+
σ T1,T2

2

2

σ T1,T2

= d2,T1,T2
* +σ T1,T2

N1 d( ) = e
− x

2

2

2π
dx

−∞

d

∫

d21 ≡

ln
StBt ,T1,− r−δ( )
ST1
*

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
−
σ t ,T1

2

2

σ t ,T1

d11 ≡

ln
StBt ,T1,− r−δ( )
ST1
*

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
+
σ t ,T1

2

2

σ t ,T1

= d21 +σ t ,T1

d22 ≡

ln
StBt ,T2 ,− r−δ( )
XU

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
−
σ t ,T2

2

2

σ t ,T2

d12 ≡

ln
StBt ,T2 ,− r−δ( )
XU

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
+
σ t ,T2

2

2

σ t ,T2

= d22 +σ t ,T2
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on the derivation and extension can be found in Brooks (2019). Next, we review the compound option 
boundary conditions based on static arbitrage. We reviewed one representation of the GBM compound 
option valuation model. Finally, selected excerpts from the R code was discussed. 
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