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Module 5.3: Arithmetic Brownian Motion-Based Binomial Models 
Learning objectives 

• Develop the binomial lattice approach to valuing ABM-based options 
• Explore the challenge posed by complex probabilities of observing terminal nodes 
• Computing European-style option values using one ABM binomial option valuation approach 
• Computing American-style option values using one ABM binomial option valuation approach 

 
Executive summary 
Arithmetic Brownian motion (ABM) results in a normally distributed terminal distribution. In this module, 
we derive a binomial model that converges to the arithmetic Brownian motion option valuation model 
(ABMOVM).  
 A lattice approach to valuing various options consistent with a normal terminal distribution is presented in 
this module. Recall in the last module, the terminal distribution was lognormal. Again, a lattice refers to how 
some underlying instrument’s value may change discretely over the next time step. The valuation approach is 
based on dynamic arbitrage. Dynamic arbitrage is based on the capacity to continuously rebalance a custom-
designed portfolio. 
 In this module, we present the non-traditional binomial valuation model we refer to as the arithmetic 
Brownian motion binomial option valuation model or ABM-BOVM. The key weakness of the ABM-BOVM 
is the need to use backward recursion with European-style options. We argue that like tools in a toolbox for 
the quantitative analyst, the varied challenges analysts face will warrant the unique tool selected. Unorthodox 
tools often prove vital with particularly challenging tasks. 
 
Central finance concepts 
We again seek an exact option value based on a valuation model. In this module, the focus is on a model that 
converges to ABMOVM in the limit. 
 Our strategy here is to apply a lattice-based approach. Again, in finance, a lattice refers to how some 
underlying instrument’s value may change discretely over the next time step. Here we present the ABM-
BOVM in this module and illustrate valuing plain vanilla options as well as digital options. We also apply 
this model to both European-style and American-style calls and puts.  
 The binomial option framework presented in this module is designed to converge to a normal distribution. 
In the limit, the ABM-BOVM will not be consistent with the BSMOVM. Like the GBM-BOVM, this model 
has several objectives that will be further developed in this module, including 

1. Additive, 
2. Recombining, 
3. Incorporate dividends (discrete and continuous), and 
4. Address early exercise with American-style options. 

Objectives 2-4 are like GBM-BOVM. Additive and recombining are incorporated with u and d parameters at 
each node. These parameters are no longer total return, but rather expressed in currency units such as dollars. 
As we will see, the discrete dividend payments are easily handled with ABM-BOVM.  

ABM one period binomial lattice framework 
Many of the more complex concepts can be easily understood within the context of a simple one period 
model. The technical details of the single period model presented below is not realistic, but it lays a solid 
framework for understanding the both the multiperiod model presented here as well as continuous models 
presented in Modules 5.4, 5.5, and 5.7. 

ABM European-style option two period model 
The single period model can be extended to multiple periods and thereby accommodate options with longer 
lives or smaller time steps. Note that by design, described in detail below, the lattice is recombining based on 
an additive process. Thus, in a single period model there are two potential future outcomes, whereas in the 
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two period model there are three potential outcomes. There will be two different paths where one arrives at 
the middle node after two periods. 
 Two key features of the two period binomial model are the recombining nature of the tree and the 
underlying instrument change is driven by an additive process. The tree is recombining because the stock 
price is assumed to grow in an additive fashion. The additive approach presented in this module facilitates 
the convergence of the stock price to the normal distribution. 

ABM American-style option two period model 
With American-style options, a backward recursion approach is taken within the lattice. At each node where 
time remains on the option, three conditions are appraised where the highest value is selected. First, the value 
of the option assuming the option is not early exercised is computed. Second, the cash value of immediately 
exercising is computed. Finally, the lower boundary of the option is computed. The maximum of these three 
values is placed in the lattice and the evaluation continues. 
 Thus, American-style options will not trade for less than their European-style counterparts. Given the vast 
number of different binomial frameworks possible, we explore guidelines known as coherence conditions. 

ABM coherence conditions 
The ABM-BOVM presented technically below is designed to converge to a normal distribution. Again, it is 
inconsistent with the Black–Scholes–Merton option valuation model (BSMOVM). The lattice will be built 
additively. That is, the value of the underlying at some future date is found by adding certain parameters. In 
the previous module, we introduced another binomial model that converges to the lognormal distribution. In 
that case, the lattice was built multiplicatively. That is, the value of the underlying at some future date is 
found by multiplying certain parameters. 
 Vital to all lattice frameworks is the need to have the lattice recombine over maturity time. In the 
binomial cases, the goal is to have the number of futures states grow linearly. In the binomial framework, the 
number of future states increase by one with each additional point in time in the lattice. 
 There have been numerous lattice-based option valuation models posited over the past several decades. 
Many of these models are not internally coherent, often admitting simple arbitrage opportunities even within 
the sterile theoretical environment. Seeking to thwart that potential, a set of four coherence conditions have 
been offered. If all four of these coherence conditions are satisfied, then the lattice model is at least internally 
coherent. 
 Although presented in detail later, we briefly sketch the coherence conditions here. First, the no arbitrage 
boundary condition requires that the total return from investing in the risk-free interest rate be greater than 
the total return on the risky instrument if the down state occurs as well as total return from investing in the 
risk-free interest rate be less than the total return on the risky instrument if the up state occurs. Second, there 
is a technical condition on the probability of an up move that it cannot be too close to either zero or one. 
Third, there is a mathematical relationship between the assumed probability of an up move and the values of 
the up and down parameters. Finally, there is a technical requirement that forces the local variance within the 
lattice to exactly equal to the assumed variance of the normal distribution in the limit. 
 Though highly technical, the coherence conditions are deeply useful when exploring alternative models 
for actual implementation. 

Dividends 
Dealing with discrete cash flows paid to the underlying instrument is straightforward for additive lattice 
models that converge to the normal distribution in the limit. These lattice trees can be built to recombine 
posing significant benefits related to practical implementation. 
 Again, one easy approach is the escrow method introduced below for handling dividend payments simply 
divides the current stock price into the present value of the known discrete dividend payments and the 
remaining stock value including any potential dividend yield component. The term escrow suggests that the 
present value of known discrete dividends is placed in a bankruptcy-proof trust that will be paid for sure and 
the remaining stock value is stochastic. Companies do not actually do this, but it is a conceptual framework 
for dividends. 
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ABM European-style multiperiod option model 
Several different ABM-based multiperiod binomial lattice frameworks are covered here. We review both the 
European-style and American-style models both with and without various forms of dividends. 
 Note that due to the use of backward recursion, we do not have to apply the log transformation introduced 
in the last module. Unfortunately, backward recursion requires more computational time. 

ABM American-style multiperiod option model 
With American-style options, a backward recursion approach is taken within the lattice. At each node where 
time remains on the option, three conditions are appraised where the highest value is selected. First, the value 
of the option assuming the option is not early exercised is computed. Second, the cash value of immediately 
exercising is computed. Finally, the lower boundary of the option is computed. Again, the maximum of these 
three values is placed in the lattice and the evaluation continues. 
 Backward recursion is necessary with both the European-style and American-style ABM-BOVM. At this 
time, there are no efficient ways to solve for European-style option values.  
 We now review selected graphical results based on the quantitative models developed below along with 
the corresponding R code. 

ABM-BOVM European-style results 
The time value plots highlight the normal distribution’s zero skewness or symmetry. Recall in Module 5.1, 
we introduced lower and upper boundaries. These boundaries are independent of assumed underlying 
distribution. Figure 5.3.1 is based on an assumed stock price of 100, exercise price of 100, risk-free interest 
rate of 5% (continuously compounded), volatility of $29.8848, dividend yield of 0%, and time to maturity of 
1 year.1  
 Panel A illustrates the convergence to the lower boundary as the stock price declines (zero for call and the 
present value of the exercise price less the stock price for the put) as well as the convergence to the lower 
boundary as the stock price increases (stock price less the present value of the exercise price for the call and 
zero for the put). 
 Panel B draws attention to just the time value. Upon careful inspection, we see the time values are 
identical and have no skewness. That is, the time values are symmetrical. The mode (peak) is technically at 
the present value of the exercise price. Recall based on actual option data, we documented significant 
observed negative skewness. 
 Panel C illustrates calls and put together for both plain vanilla options and digital options. The digital 
options are cash-or-nothing and pays the exercise price if the underlying is in-the-money at expiration. The 
stepped mapping with digitals reflects the use of 500 time steps introducing minor discontinuities.  
 Panel D shows the convergence properties for both plain vanilla and digital options as we increase the 
number of time steps. Note that digital options are a bit unstable for smaller number of steps. 
 
  

 
1The volatility was selected to yield the same initial option values as 30% relative volatility with GBMOVM 
or BSMOVM. 
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Figure 5.3.1 Selected ABM-BOVM Results: European-Style with no Dividends 

   

   

     

   
 
 For comparison with the previous module, the dividends to be incorporated are based on a constant 
dividend yield—a common approach to handling interim cash flows of an underlying instrument. Figure 
5.3.2 was computed based on the same parameters above, but the dividend yield equals the interest rate of 
5% (annualized, continuously compounded). 
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 Comparing Panel A here with the prior no dividend case we see the lower boundary now changes at the 
current exercise price rather than at the present value of the exercise price. This effect is due to arbitrageurs 
being able to purchase less stocks due to dividend receipts to hedge their position.  
 Panel B is also like the no dividend case, except the mode is at the current exercise price. Compared to 
GBM-BOVM, the time value is symmetric and not positively skewed.  
 Panel C is also similar, but the intersection point for both the plain vanilla and digital options is at the 
current exercise price.  
 Finally, Panel D shows eventual convergence, but it is much less stable in both cases. 
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Figure 5.3.2 Selected ABM-BOVM Results: European-Style with Dividends 

   

   

   

   
 
 Figure 5.3.3 presents values derived from both the European-style and American-style option valuation 
model with no dividends. Note that without dividends, we see from Panel A that call options are never 
exercised early; hence, the American-style (AS) call value is identical to the European-style (ES) call value. 
The lower boundary conditions for AS calls and ES calls are also the same. The same cannot be observed for 
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puts. Due to arbitrage forces, AS put values are worth more than ES put values, particularly noticeable when 
the put options are in-the-money. Further, notice that put values converge to the appropriate lower boundary 
conditions. 
 Panel B provides the same format, except focused solely on option time value. Again, we see there is no 
difference between AS and ES call option time values whereas there is significant difference between AS 
and ES put option time values. Although, ES put values are lower, due to the lower boundary effect, the ES 
put time values are higher than AS put time values. Like GBM-BOVM, the early exercise feature has a 
material effect on non-dividend paying put options based on the ABM-BOVM. We again observe the 
symmetric pattern of time values with ABM-BOVM. 
 Panel C combines AS and ES as well as puts and calls. The left-hand side shows the plain vanilla options, 
and the right hand side shows the digital cash-or-nothing options. Obviously, the early exercise feature of AS 
digital options has a profound impact on option values. 
 
Figure 5.3.3 Selected ABM-BOVM Results: American-Style with no Dividends 

   

   

   
 
 Figure 5.3.4 illustrates option values derived from both the European-style and American-style option 
valuation model with dividends. Here we assume the dividend yield equals the interest rate of five percent. 
 Note that with dividends, we see a similar result as observed with GBM-BOVM. In Panel A, note that call 
options are potentially exercised early; hence, the American-style (AS) call values are no longer identical to 
the European-style (ES) call values when the call options are deep in-the-money. The lower boundary 
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conditions for AS calls and ES calls are no longer the same. Due to arbitrage forces, both AS call values and 
AS put values are worth more than ES call values and ES put values, respectively. This difference is 
noticeable when the options are in-the-money. Also, notice that both the call and put valuation models for 
both AS and ES options converge to their appropriate lower boundary conditions. 
 Panel B provides the same format, except focused solely on option time value. We see here that both calls 
and puts differ between AS and ES option time values when the options are deep in-the-money. Although, 
ES option values are lower, due to the lower boundary effect, the ES time values are higher than AS time 
values. Although the early exercise feature has a material effect on dividend paying options based on the 
ABM-BOVM, the impact on puts is diminished because dividends have on the lower boundary condition. 
 Panel C combines AS and ES as well as puts and calls. Again, the left-hand side shows the plain vanilla 
options, and the right hand side shows the digital cash-or-nothing options. As before, the early exercise 
feature of AS digital options has a profound impact on option values. 
 
Figure 5.3.4 Selected ABM-BOVM Results: American-style with Dividends 

   

   

   
 
 We now take a deep technical dive into the mechanics of ABM-BOVM.\ 
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Quantitative finance materials 
We repeat the notation given in Module 5.2 with some modifications (u and d). Like the GBM-based 
binomial model, the notation used in this module is extensive, so we first explicitly define all the variables 
used. 

ABM notation review 
 0, T, Dt initial trade date, time 0; expiration or maturity date, time T; next time step, 
 S0, ST  value of underlying instrument, e.g., stock, at time 0 and at time T, 
 u, d  up, dollar change in S, if up occurs (u > 0) and if down occurs (d < 0), 
 B0, BT  bond, value of risk-free investment at time 0 and at time T, 
 V0, VT  portfolio, value of some financial instrument portfolio at time 0 and at time T, 
 i   indicator function, +1 for calls and –1 for puts, 
 O0   option, value of options, either call or put, at time 0, 
 Ou, Od  option, value of option at time T if up occurs and if down occurs, 
 D   delta, hedge ratio, units of the financial instrument to enter to hedge option position, 
 FV()  future value based on risk-free interest rate, 
 PV()  present value based on risk-free interest rate, 
 p   equivalent martingale probability of up move, 
 Ep ()  expectation under equivalent martingale probability, 
 r   discretely compounded, periodic “risk-free” interest rate, 
 rc   continuously compounded, annualized, “risk-free” interest rate, 
 d   continuously compounded, annualized, dividend yield, and 
 DT   known discrete dividend amount paid at time T (ex-dividend the instant before the next 
    binomial point in time). 
 

ABM one period binomial option model 
We specify an underlying instrument priced at S0 that can go up to S0 + u (up state) or down to S0 + d (down 
state), where u > 0 and d < 0. Given the desire to converge to a normal distribution and not the lognormal 
distribution, we pursue an additive binomial approach. Note that u and d are expressed in currency units, 
such as dollars, and not total return as with the GBM-based approaches.  
 Figure 5.3.5 illustrates the additive single period binomial framework where O denotes a generic (call or 
put) option value. At the initial point in time, there is only one node whereas at the next point in time there 
are only two nodes. Also, at the initial point in time, there are two arcs emanating from the initial node, 
hence the name binomial.  
 
Figure 5.3.5 Additive One Period Binomial Framework 
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 Again, changes in S are additive; hence, this process is called an additive binomial tree. Consider a 
generic option with exercise price X that expires in one period. The two possible values for the generic option 
at expiration are 

 . (5.3.1) 

Of course, our objective is to determine the current option value denoted generically as O.  
ABM one period call option binomial model  
The basic layout with the corresponding call option prices inserted at each node is in Figure 5.3.6. 
 
Figure 5.3.6 Additive One Period Call Option Binomial Framework 

 
 
 A portfolio consisting of the option and the underlying instrument is created in such a way that it is 
hedged. That is, the future value is known for certain and therefore should earn the risk-free rate. We can 
then solve for the price of the call option that is consistent with a risk-free return. Let us buy hc units of the 
instrument and sell one call. The value of this portfolio today (V0) is 

 . (5.3.2) 

The value at expiration of this portfolio in the two future states is 

 . (5.3.3) 

 Figure 5.3.7 illustrates the process thus far. The top row is the underlying instrument’s price process. The 
second row illustrates the call option’s price process. Finally, the third row illustrates the portfolio value’s 
process, where the portfolio is comprised of hc units of the underlying instrument and short one call option. 
 

Ou = max 0,ι S0 + u − X( )⎡⎣ ⎤⎦
Od = max 0,ι S0 + d − X( )⎡⎣ ⎤⎦

V0 = hcS0 − c0

Vu = hc S0 + u( )−max 0,S0 + u − X( ) = hc S0 + u( )− cu
Vd = hc S0 + d( )−max 0,S0 + d − X( ) = hc S0 + d( )− cd
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Figure 5.3.7 ABM Binomial Process for Underlying Instrument, Call Option, and Hedge Portfolio 

 
 
 Up to this point, we have two instruments and have entered opposite exposures. Specifically, we are long 
the underlying instrument and short the call. We now introduce a third instrument, the risk-free instrument. If 
the portfolio represented by V can exactly replicate a risk-free instrument, it must produce a risk-free return, 
meaning that these two outcomes are the same, as specified by the terminal value condition,  

 . (5.3.4) 

If we set the terminal portfolio values equal to each other, we have one equation with only one unknown, 
 whose solution can be expressed as 

 . (5.3.5) 

 This result is known as the optimal hedge ratio. Specifically, it tells us how many underlying instruments 
to buy for every call written. The sign of hc will be positive as cu > cd and u > d. Recall we assume u > 0 and 
d < 0, hence u – d > 0. Thus, if the number of units of the underlying instrument that we hold is set to hc, the 
two future values of the instrument will be identical. Hence, the portfolio is risk-free. To avoid arbitrage, the 
portfolio must be priced to earn the risk-free rate. The discretely compounded periodic risk-free rate is 
denoted r. Thus, the following condition must hold: 

 . (5.3.6) 

Consequently, we can substitute into Equation (5.3.6), using either Vu or Vd. We will choose Vu, thus 

 . (5.3.7) 

Therefore, the initial call price can be represented based on the no arbitrage model as 

 , (5.3.8) 

where 

 . (5.3.9) 

Thus, a call option can be replicated by purchasing hc units of the underlying instrument partially financed 
through borrowing of B0,c. From this analysis, a call option is simply a leveraged position in the underlying 
instrument.  

Vu =Vd

hc (S0 + u)− cu = hc (S0 + d)− cd

hc =
cu − cd

S0 + u − S0 + d( ) =
cu − cd
u − d

V0 =
Vu
1+ r

=
Vd
1+ r

hc S0 + u( )− cu
1+ r

= hcS0 − c0

0 0 0,c cc h S B= -

B0,c =
hc S0 + u( )− cu

1+ r
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 To solve for the equivalent martingale measure model, the next step is to insert the solution for hc, 
Equation (5.3.8), and solve for c0: 

 , (5.3.10) 

where the equivalent martingale measure probability is time and state dependent2 

 . (5.3.11) 

The derivation of Equation (5.3.10) is provided in Appendix 5.3A. We emphasize that the equivalent 
martingale measure probability is dependent on time and state due to its dependence on the underlying 
instrument’s price. This will result in a less efficient valuation procedure when compared to GBM-BOVM. 
 Again, another view is that the call price is simply the present value of the expected future call payoffs 
discounted at the risk free rate. The probabilities used in forming the expectations, however, are not the real 
probabilities. They are based on the equivalent martingale measure or the risk neutral probabilities. 
ABM one period call option binomial model example 
 For example, suppose the current stock price is $99, the strike price is $100, the annual, discretely 
compounded, risk free rate is 2%, the time to expiration is one year, u = $24.75, and d = –$19.8. We can 
compute the call price in two ways. First, note: 

 cu = max(0, 123.75 – 100) = 23.75 and 
 cd = max(0, 79.2 – 100) = 0. 

For the no arbitrage model, we first find the hedge ratio  

 hc = (cu – cd)/(u – d) = (23.75 – 0)/(24.75 – –19.8) = 23.75/44.55 = 0.5331. 

Therefore, based on Equation (5.3.8), we have 

  

Alternatively, we can use apply the risk neutral model. The binomial probability of an up move is  

 . 

Therefore, based on Equation (5.3.10), we find the same results or  

 . 

ABM one period put option binomial model  
Following the structure from the previous sections on calls, the basic layout with the corresponding put 
option prices inserted at each node is in Figure 5.3.8. 
 

 
2The dependency on the level of S will prove a bit challenging when deriving European-style option values. 

c0 = PV E cT( )⎡⎣ ⎤⎦ =
π 0cu + 1−π 0( )cd

1+ r

π 0 =
S0r − d
u − d

( )

( ) ( )

0
0 0 1

0.5331 99 24.75 23.75
0.5331 99

1 0.02
52.7769 41.3933 11.38

c u
c

h S u c
c h S

r
+ -

= -
+

+ -
= -

+
= - =

( ) ( )
( )

1

99 0.02 19.8 21.78 0.488889
24.75 19.8 44.55

r d
u d

p + -
=

-
- -

= = =
- -

c0 =
0.4889 23.75( )+ 1− 0.4889( )0

1+ 0.02
= 11.38
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Figure 5.3.8 Additive One Period Put Option Binomial Framework 

 
 
 As with calls, a portfolio consisting of the put option and the underlying instrument is created in such a 
way that it is hedged. That is, the future value is known for certain and therefore should earn the risk-free 
rate. We can then solve for the price of the put option that is consistent with a risk-free return. Let us buy hp 
units of the underlying instrument and buy one put. Note that to hedge, we need to be on the same side of the 
market. Here, we show buying both the underlying instrument and buying the put. The value of this portfolio 
today (V0) is 

 . (5.3.12) 

The value at expiration of this portfolio in the two future states are 

 . (5.3.13) 

 Figure 5.3.9 illustrates the process thus far. The top row is the underlying instrument’s price process. The 
second row illustrates the put option’s price process. Finally, the third row illustrates the portfolio value’s 
process, where the portfolio is comprised of hp units of the underlying instrument, and one put option. 
 
Figure 5.3.9 Binomial Process for Underlying Instrument, Put Option, and Hedge Portfolio 

 
 
 Up to this point, we have two instruments and have entered similar (long) exposures. Specifically, we are 
long the underlying instrument and long the put. We now introduce a third instrument, the risk-free 
instrument. If the portfolio represented by V can exactly replicate a risk-free instrument, it must produce a 
risk-free return, meaning that these two outcomes are the same, as specified by the terminal value condition,  

 . (5.3.14) 

0 0 0pV h S p= +

( ) ( ) ( )
( ) ( ) ( )
0 0 0

0 0 0

max 0,

max 0,
u p p u

d p p d

V h S u X S u h S u p

V h S d X S d h S d p

= + + - + = + +é ùë û
= + + - + = + +é ùë û

Vu =Vd
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If we set the terminal portfolio values equal to each other, we have one equation with only one unknown,  

 , (5.3.15) 

whose solution can be expressed as 

 . (5.3.16) 

 This result is known as the optimal hedge ratio. Specifically, it tells us how many underlying instruments 
to buy for every put purchased. The sign of hp will be positive as pd > pu and u > d. Recall we assume u > rS0 
> d. Thus, if the number of units of the underlying instrument that we hold is set to hp, the two future values 
of the underlying instrument will be identical. Hence, the portfolio is risk-free. To avoid arbitrage, the 
portfolio must be priced to earn the risk-free rate. Again, the discretely compounded periodic risk-free rate is 
denoted r. Thus, the following condition must hold: 

 . (5.3.17) 

Consequently, we can substitute into Equation (5.3.17) using either Vu or Vd. We choose Vd, thus 

 . (5.3.18) 

Therefore, the initial put price can be represented based on the no arbitrage model as 

 , (5.3.19) 

where 

 . (5.3.20) 

Thus, a put option can be replicated by short selling hp units of the underlying instrument and lending of B0,p. 
From this analysis, a put option is simply shorting a stock with lending. 
 To solve for the equivalent martingale measure model, the next step is to insert the solution for hp into 
Equation (5.3.20), and solve for p0: 

 , (5.3.21) 

where the equivalent martingale measure probability is, unfortunately, time and state dependent3 

 . (5.3.22) 

The derivation of Equation (5.3.21) is provided in Appendix 5.3A. Thus, another view is that the put price is 
simply the present value of the expected future put payoffs discounted at the risk free rate. The probabilities 
used in forming the expectations, however, are not the investor’s subjective probabilities. They are based on 
the equivalent martingale measure or the risk neutral probabilities. 
ABM one period put option binomial model example 
 Again, suppose the current stock price is $99, the strike price is $100, the annual, discretely compounded, 
risk free rate is 2%, the time to expiration is one year, u = $24.75, and d = –$19.8. Like the call, we can 

 
3This independence is an important feature for optimizing calculations of European-style option values. As 
we will see in the next module, arithmetic Brownian motion-based binomial valuation models will have 
dependent equivalent martingale measure probabilities requiring a bit more effort to build binomial models. 
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compute the put price in two ways. First, note that pu = max[0, 100 – (99 + 24.75)] = 0 and pd = max[0, 100 – 
(99 + –19.8) = 20.8. For the no arbitrage model, we again find the hedge ratio hp = (pd – pu)/(u – d) = (20.8 – 
0)/( 24.75 – –19.8) = 20.8/44.55 = 0.4669. Therefore, based on Equation (5.3.19), we have 

 . 

 Alternatively, we can use the risk neutral model. Again, we have  

 p = [99(0.02) – (–19.8)]/[24.75 – (–19.8)] = 48.8889%.  

Therefore, based on Equation (5.3.21), we find the same results or  

 . 

 When market prices deviate from these model prices, then arbitrage opportunities exist. We explore 
capturing arbitrage profits in Appendix 5.3B. 

ABM European-style option two period model 
The model can be extended to multiple periods and thereby accommodate options with longer lives or 
smaller time steps. For example, we can let the underlying instrument move from S + u to S + 2u or S + u + 
d. From S + d, the underlying instrument can move to S + d + u or S + 2d. Note that S + u + d = S + d + u, so 
over two periods, there are only three possible outcomes. The underlying instrument can go up twice to S0 + 
2u, up and then down or down and then up to S0 + u + d, or down twice to S0 + 2d. The call and put option 
payoffs in those states are 

  and . (5.3.23) 

 The layout is illustrated in Figure 5.3.9. The illustration is looking more like a branching tree or lattice. 
Two key features of the binomial model here is the recombining nature of the tree, and the growth of the 
stock price is additive. The tree is recombining because the stock price is assumed to grow by addition such 
that S0 + u + d = S0 + d + u. Clearly, the order of addition does not matter. The additive approach presented 
here facilitates the convergence of the stock price to the normal distribution. 
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Figure 5.3.9 Two Period European-Style Binomial Model 

 
 
 Let us position ourselves in the time 1 up-state, where the underlying instrument price is S + u. At this 
point, we are now back in a one-period world. There are two outcomes possible outcomes in the next period, 
which is the expiration. It should be easy to see that the value of the call and put at this point would be: 

  and , (5.3.24) 

where  

 . (5.3.25) 

Likewise, in the time 1 down-state, the option value would be 

  and . (5.3.26) 

where we emphasize that these probabilities are observed at time 1 or 

 . (5.3.27) 

Note that p1,u ≠ p1,d ≠ p0 because Su ≠ Sd ≠ S0. Stepping back to time 0, the value of the call and put options 
are again found with Equation (5.3.10), where the values of cu and pu are given in Equation (5.3.24) and cd 
and pd are given in Equation (5.3.26). Thus, to price options in the binomial framework in this multiperiod 
model, we start at the end—the exercise date—and work backwards to the present. 
 Although p is not constant, the special case for two-period options does lend itself to a simple formula 
that relates the initial option value to the value two periods later, essentially skipping over the first period. 

  (5.3.28) 

 and  

cu =
π1,uc2u + 1−π1,u( )cud

1+ r
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1+ r
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⎣
⎤
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 . (5.3.29) 

Note that the three option payoffs two periods later are each weighted by the risk neutral probabilities, 

, , and . These are the binomial probabilities for two trials, and 

they add up to 1. 
ABM two period call and put option binomial model example 
As with the GBM-BOVM examples, suppose the current stock price is $99, the strike price is $100, the 
annual, discretely compounded, risk free rate is 2%, the time to expiration is two years, u = 24.75, and  
d = –19.80. Now assume a two-period binomial model. Based on Equations (5.3.28) and (5.3.29), we can 
compute the call and put prices. First, we compute the terminal payoffs for both calls and puts as  

  and  (5.3.30) 

 . (5.3.31) 

The binomial probability of an up move at time 0 is p0 = [99(0.02) – (–19.80)]/[24.75 – (–19.80)] = 48.89%, 
at time 1 assuming up is pu,1 = [123.75(0.02) – (–19.80)]/[24.75 – (–19.80)] = 50%, and at time 1 assuming 
down is pd,1 = [79.20(0.02) – (–19.80)]/[24.75 – (–19.80)] = 48%. Therefore, based on Equation (5.3.28), we 
find  

  (5.3.32) 

and, based on Equation (5.3.29), we have 

 .(5.3.33) 

 Alternatively, the two period binomial model can be viewed as three one period binomial models and the 
no arbitrage model applied. The call results are illustrated in Figure 5.3.10. Note that at node (1,0) both the 
call value and hedge ratio are zero because it is not possible that this option will end up in-the-money at time 
2. Node (2,0) is out-of-the-money and node (2,1) is at-the-money. At node (1,1), the call value is 
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 . (5.3.34) 

At time 0, the call hedge ratio is 

 . (5.3.35) 

At time 0, the call value is 

 . (5.3.36) 

 
Figure 5.3.10 Two period European-Style Binomial Call Model Example 

 
 
 The put results are illustrated in Figure 5.3.11. Note that at node (1,1) both the put value and hedge ratio 
are zero because it is not possible that this option will end up in-the-money at time 2. Node (2,2) is out-of-
the-money and node (2,1) is at-the-money. At node (1,0), the put value is 

 . (5.3.37) 

At time 0, the put hedge ratio is 

 . (5.3.38) 
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At time 0, the put value is 

 . (5.3.39) 

 
Figure 5.3.11 Two Period European-Style Binomial Put Model Example 

 
 
 We turn now to address American-style options where early exercise may enhance the worth of an option. 

ABM American-style option two period model4 
Recall if the options are American-style, they can be exercised early. Cash payments, such as dividends, will 
influence the early exercise decision. Thus, we first examine this influence. 
American-stye options and dividends 
It is well known that American call options will not be exercised early unless there is some cash or cash-
equivalent amount paid by the underlying instrument, in which case early exercise could be justified 
immediately before the cash is paid. An example of a non-cash benefit is ski lift tickets given to stockholders 
of a ski company. The typical assumption is that any benefits of this nature are immediately sold for cash and 
this cash amount is included in any holding period return calculations. Obviously, one could go skiing but the 
financial analysis assumes that it is sold. Note that cash dividend on the stock result in less equity per share 
remaining with the company and hence, the stock price should decline by the dividend amount. This stock 
price decline is detrimental to call holders. 
 There are two primary methods for handling the underlying instrument paying out something of value, the 
yield method, and the escrow method. We focus here on cash dividends on a stock. The yield method 
assumes the dividend is a constant rate of the value of the stock. This approach, however, would imply a very 
small dividend at every time step. Options on stock indexes come close to a continuous yield and can be 
approximated by a yield. 
 The escrow method assumes the present value of the dividends to be paid out over the life of the option is 
placed in a bankruptcy proof escrow account denoted PVD. The escrow account is then used to make the 
future dividend payments. Thus, the remaining stock value is simply based on subtracting the escrow amount 
from the current value of the underlying. The stock price minus the present value of dividends, S’ = S – PVD, 
is modeled with the binomial tree according to the factors u and d. At a given node at which the dividend is 
paid, we decide if the option is worth exercising just before the stock goes ex-dividend. If so, the exercise 
value replaces the value obtained using the formula.  

 
4Much of this section repeats from the prior model. We keep this material here as some readers may skip 
around rather than working sequentially. 

( )

( ) ( )

0 0
0

1
1

0.4889 0 1 0.4889 20.698
10.37

1 0.02

u dp p
p

r
p p+ -

=
+
+ -

= =
+



 
© 2023 Robert Brooks. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. 

20 

 For example, suppose at a point in the tree, we have a value of the stock price minus the present value of 
all remaining dividends over the life of the option of $42. Suppose that using the binomial formula, we 
compute the value of the call at that point as $2.25. Assume there is a $3 dividend being paid at this time 
point. Then the stock price with the dividend is $45. If the exercise price is $42, we could exercise it and 
collect a value of $3, which is more than its unexercised value of $2.25. Thus, we would replace $2.25 with 
$3. This early exercise check would be done at all points in the tree in which the option is in-the-money. 
 It is known that early exercise could occur regardless of a dividend for put options. At every in-the-money 
point in the binomial tree, we examine whether the put is worth more exercised or not. If it is worth more to 
early exercise, the exercise value is used at that point into the tree as the option value. If it is not worth more 
to early exercise, we simply continue to use the computed value obtained by the single period binomial 
formula. Dividends will reduce the frequency of early exercise since dividends drive the stock price down, 
which makes puts worth more. Exercising early negates this benefit. Early exercise generally occurs just after 
a dividend when the stock price falls. 
ABM two period American-style put option binomial model example 
 Recall the data related to Figure 5.3.11. If this put option was American-style, we would exercise the put 
at node (1,0). Figure 5.3.12 illustrates this adjustment. Therefore at time 0, the put value is 

 . (5.3.40) 

 
Figure 5.3.12 Two period American-Style Binomial Put Model Example 

 
 
 We now explore coherence conditions when there are no dividends. 

ABM coherence conditions 
In this section, we will follow closely the framework used with the GBM-based binomial model. The 
difference here is the variance is based on dollar changes in the underlying and not percentage changes. 
No dividend coherence conditions 
We seek to build an option valuation model with certain assumption known as the coherent conditions. We 
assume a time step of Dt. The coherent conditions comprise four assumptions:5  
1)  (no arbitrage boundary condition). 
2)  (probability condition, distribution independent, not “close” to 0 or 1). 

 
5Based, in part, on Don Chance, “A Synthesis of Binomial Option Pricing Models for Lognormally 
Distributed Assets,” Journal of Applied Finance (Spring/Summer 2008). 
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3)  (no arbitrage distribution independent condition). 

4)  (variance condition of the price changes, distribution independent). 
 We briefly comment on each coherent condition. Arithmetic Brownian motion converges in the limit to 
the normal distribution at every future point in time; hence, zero or negative instrument values are certainly 
possible. Recall limited liability required that d is greater than 0, but limited liability does not imply the 
financial instrument cannot be valued at zero at some future point in time. Limited liability can be 
incorporated with ABM using zero strike put options. In this case,  = 0 is certainly possible. 
 Investing in a “risk-free” financial instrument should change by more than the down change (less 
negative) if the down event, d, occurs; otherwise, no one would buy the “risk-free” instrument (

). Specifically, if , then buy the risky financial instrument with borrowed 
money. Thus, you have at least a positive probability of future positive cash flow, with no initial investment. 
Similarly, investing in the risky instrument should earn more than the “risk-free” instrument at some future 
point (u occurs); otherwise, no one would buy the risky instrument ( ). Specifically, if 

, then buy the “risk-free” financial instrument and short sell the risky financial instrument. 
Thus, you have at least a positive probability of future positive cash flow, with no initial investment. 
 The equivalent martingale measure (risk-neutral probability) of the up event cannot be “too close” to zero 
or one. If  is “too close” to 0, then u will tend to positive infinity. If   is “too close” to 1, then d will tend 
to negative infinity. In both cases, one will encounter stability problems with numerical implementations. 
 The no arbitrage condition is the result of potential arbitrage trading activities forcing specific relationship 
between the option and underlying stock. Under the equivalent martingale measure, the present value of an 
option (O) is 

 . (5.3.41) 

Thus, for an underlying instrument, S, we observe 

 , and (5.3.42) 

 . (5.3.43) 

Note that these equations hold only if no arbitrage condition above is true. 
 The variance condition is required to converge to the ABMOVM (discussed in Module 5.5) as well as be 
consistent at each node. The variance of the dollar change in price is (S0 > 0). Therefore, 

 .  (5.3.44) 

Substituting for  and cancelling S0, 

 . (5.3.45) 

Substituting for the mean and rearranging, we have the results in the variance condition above, 

 . (5.3.46) 
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As with the GBM-based model, with these four coherence conditions, we can demonstrate the functional 
form for u and d. 
No dividend u and d conditions 
With these coherence conditions, we can establish the following expressions for u and d: 

 , (5.3.47) 

and 

 . (5.3.48) 

 We now prove these two conditions. Isolating u based on the no arbitrage condition, we have 

 . (5.3.49) 

Substituting this result into the variance condition of absolute volatility, we have 

 . (5.3.50) 

Solving for d, 

 . (5.3.51) 

Thus the normal coherent binomial down move for the single period model is 

 . (5.3.52) 

Solving for the up move 
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 . (5.3.53) 

The normal coherent binomial up move for a single period is 

 . (5.3.54) 

 Let us consider the range of p. As p tends to 1 from below, note that u tends to  and d tends to 

0. As p tends to 0 from above, note that u tends to positive infinity and d tends to . Thus, p cannot 

be too ‘close’ to either 0 or 1. So long as p is in a reasonable range, then numerically  

exactly. 
 Table 5.3.1 illustrates the relationship between u, d, and p. The first column is selected values for the 
equivalent martingale probability of up move. The values for u and d are computed based on Equations 
(5.3.54) and (5.3.48), respectively. Finally, the fourth column (Prob Check) recomputes the equivalent 
martingale probability of up move based on the coherence condition 3 (no arbitrage distribution independent 
condition) as well as the computed values for u and d. 
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Table 5.3.1. Relationship between u, d, and p 

 
 
 Because p is arbitrary, the coherence conditions comprise a family of binomial option valuation models. 
These models converge to the arithmetic Brownian motion option valuation model in the limit as the number 
of time steps tends to infinity (or the step size tends to zero). Specifically, based on the use of u and d above, 
the coherent normal binomial model converges to the arithmetic Brownian option valuation model presented 
in Module 5.5.  
 Before addressing dividends, we present the ABM-BOVM. 

ABM-based binomial option valuation model: No dividends, European-style 
The GBM European-style multiperiod option model results in a recombining tree in both outcomes as well as 
probabilities. Thus, the well-known result for a call option can be expressed as 

 , (5.3.55) 

where O0 denotes the current call or put value, i denotes an indicator function that equals +1 if call and –1 if 
put, and PVr is simply a present value factor. 
 Unfortunately, for ABM the probabilities are path dependent due to the geometric growth rate assumed 
for the underlying instrument. That is, 
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 . (5.3.56) 

There are several ways to handle the computation of Pr(n,j). We focus here on the approach that is easiest to 
build a computer solution, but not the fastest solution. 
 Recall the ABM binomial lattice is additive and recombining. Thus, the number of nodes grows only at a 
rate of one per additional node. Unfortunately, the number of path calculations for determining terminal 
probabilities is exploding. We pursue backward recursion as a valuation solution. Specifically, we assume 
the time to maturity is divided into n time steps of size Dt. Figure 5.3.13 illustrates the case with n = 9. For 
example, assume we are evaluating a 9 month option where each time step is 1 month. At expiration, n = 9 or 
T = 9/12, we know the terminal payoffs based on . At point in time 8, we apply Equation 
(5.3.24) at each node. We then repeat the process at point in time 7 and so forth. Note that the number of 
nodes is declining by one as we recurse backward through the lattice. 
 
Figure 5.3.13 Nine Period Binomial Model 

 
 

ABM-based binomial option valuation model: No dividends, American-style 
The process for valuing American-style options is similar to European-style options. The only difference is 
that at each step, except the point in time of expiration, we consider whether early exercise is more valuable 
than continuation. Also, we consider whether there is a violation of lower boundary conditions. 
 We now further explore the role of dividend on both European and American options. 

Dividends 
Dividends do not pose a problem with the additive binomial model. Figure 5.3.14 illustrates that we do not 
lose of the recombining property in the presence of a cash dividend at time 1. Recall that the stock price falls 
by the dollar dividend amount on the ex-dividend date. Optimal early exercise may occur either right before 
the ex-dividend date for calls, or right after the ex-dividend date for puts. Due to the additive nature of ABM, 
the binomial tree does recombine after a dollar dividend payment. 
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Figure 5.3.14 Two Period Binomial Model with Discrete Dividends 

 
 
Note that mathematically, 

 . (5.3.57) 

Thus, the presence of discrete dividends poses no computational problem with ABM. We turn now to deal 
with the challenges related to a multiperiod model. 
 
Summary 
ABM results in a normally distributed terminal distribution. In this module, we derived a binomial model 
that converges to the ABMOVM.  
 A lattice approach to valuing various options consistent with a normal terminal distribution (as opposed to 
the lognormal distribution in the last module) was presented in this module. The valuation approach was 
based on dynamic arbitrage. Dynamic arbitrage is based on the capacity to continuously rebalance a custom-
designed portfolio. 
 In this module, we present the non-traditional binomial valuation model, ABM-BOVM. Again, the key 
weakness of the ABM-BOVM is the need to use backward recursion with European-style options. We argue 
that like tools in a toolbox for the quantitative analyst, the varied challenges analysts face will warrant the 
unique tool selected. Unorthodox tools often prove vital with particularly challenging tasks. 
 
References 
See references in Module 5.2. 
 
Appendices for Module 5.3. 
Several technical issues are covered in these appendices. 

Appendix 5.3A. Derivation of Equation (5.3.10) 
We start with Equation (5.3.7), re-stated here as6 

 .  (5.3.58) 

Now substitute for h, using Equation (5.3.5), 

 
6Note that we suppress the time subscript for ease of exposition. 

S0 − D + u + d = S0 − D + d + u

hc S + u( )− cu
1+ r

= hcS − c
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 .  (5.3.59) 

Rearranging, we have 

 . (5.3.60) 

Then we multiply through by 1 + r, 

 . (5.3.61) 

Then we cancel S, 

 . (5.3.62) 

Using the common denominator u – d, we obtain 

 . (5.3.63) 

Now, let us define π as in Equation (5.3.10), 

 . (5.3.64) 

Then 1 – π is  

 . (5.3.65) 

So the solution is  

 . (5.3.66) 

which is Equation (5.3.10). 

Appendix 5.3B. Arbitraging price discrepancies within a one period model 
If the actual market price of the option differs from the model price, an arbitrage is possible. Consider the 
call option case. If the call can be sold for more than the formula value, Equation (5.3.8), the call is 
overpriced. Overpriced instruments should be sold. Simply selling the call, however, hardly qualifies as an 
arbitrage. If the call expires in-the-money, one could incur a significant loss, even though the call were 
underpriced. Instead, the arbitrage should be completed, and the risk eliminated by holding an offsetting 
number of units of the stock. 
 The arbitrageur would, thus, buy hc units of the stock for each call sold and borrow Bc. It should be easy 
to see that the investment required would be less than what is received from the written call. Convergence of 
the option value to its exercise value is assured one period later, as the option is expiring and can clearly be 

cu − cd
u − d

⎛
⎝⎜

⎞
⎠⎟
S + u( )− cu

1+ r
=
cu − cd
u − d

⎛
⎝⎜

⎞
⎠⎟
S − c

cu − cd
u − d

⎛
⎝⎜

⎞
⎠⎟
S −

cu − cd
u − d

⎛
⎝⎜

⎞
⎠⎟
S + u( )− cu

1+ r
= c

cu − cd
u − d

⎛
⎝⎜

⎞
⎠⎟
S 1+ r( )− cu − cd

u − d
⎛
⎝⎜

⎞
⎠⎟
S + u( )+ cu = c 1+ r( )

cu − cd
u − d

⎛
⎝⎜

⎞
⎠⎟
Sr −

cu − cd
u − d

⎛
⎝⎜

⎞
⎠⎟
u + cu = c 1+ r( )

cuSr − cdSr − cuu + cdu + cuu − cud
u − d

= c 1+ r( )
cu Sr − d( )+ cd u − Sr( )

u − d
= c 1+ r( )

Sr d
u d

p -
=

-

1 u Sr
u d

p -
- =

-

( )1
1

u cc c
c

r
p p+ -

=
+



 
© 2023 Robert Brooks. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. 

28 

worth only its exercise value. With less money invested and the same payoff as before, the rate of return 
clearly exceeds the risk-free rate. If the option trades at below the formula price, it would be purchased and 
hc units of the stock would be sold, creating a net short position. The proceeds would be invested in risk-free 
bonds to earn the rate r. With the option purchased at a lower than fair price, the stock and option would 
finance the purchase of the risk-free instrument at a lower cost than it should if correctly priced, so the 
investor would earn an arbitrage profit.  
 Based on the information given in the past two examples, suppose we have the following market quotes, 
cQ = $11.43 and pQ = $10.37. Recall S0 = $99, X = $100, r = 0.02,  = 1, u = $24.75, and d = –$19.8. In 
equilibrium, we found c0 = $11.38 and p0 = $10.42, thus the call price is too high and the put price is too low. 
Arbitrageurs typically prefer to receive positive cash flow today with no chance of any future liability.  
 Because the quoted call price is too high, the arbitrageur would sell it and buy the synthetic call option. 
Buying the synthetic call entails buying the stock with borrowed money. Table 5.3B.1 illustrates capturing 
the arbitrage profit available with the call option. 
 
Table 5.3B.1. Cash Flow Table for Single Period ABM Model Applied to Call Options 

Strategy  Today Down Event at 
Expiration 

Up Event at Expiration 

Sell Call  +c0,q = +11.43 –max(0,S0 + d – X) = 0 –max(0,S0 + u – X) = –
23.75 

Buy hc Shares  –hcS0 = –52.78 +hc(S0 + d) = +42.22 +hc(S0 + u) = +65.97 
Borrow  +Bc = +41.39 –Bc(1 + r) = –42.22 –Bc(1 + r) = –42.22 
  Net Cash 
Flow 

 +0.04 0 0 

 
 Thus, the arbitrageur receives $0.04 today with no chance of a future liability. Within this simple one 
period binomial world, trading pressure will drive down the quoted call price and drive up the quoted stock 
price until the net cash flow is zero. 
 If the quoted put price, however, is too low, the arbitrageur would buy it and sell the synthetic put option. 
Selling the synthetic put entails buying the stock with borrowed money. Table 5.3B.2 illustrates capturing the 
arbitrage profit available with the put option. 
 
Table 5.3B.2. Cash Flow Table for Single Period ABM Model Applied to Put Options 

Strategy Today Down Event at Expiration Up Event at Expiration 
Buy Put –p0,q = –10.37 +max[0,X – (S0 + d)] = +20.80 +max[0,X – (S0 + u)] = 0 
Buy hp Shares –hpS0 = –46.22 +hp(S0 + d) = +36.98 +hp(S0 + u) = +57.78 
Borrow +Bc = +56.65 –Bc(1 + r) = –57.78 –Bc(1 + r) = –57.78 
  Net Cash Flow +0.06* 0 0 

* Note the quoted price is $10.37 and the model price is $10.42, a difference of $0.05. The table reports an 
arbitrage profit of $0.06 The 0.01 discrepancy is simply rounding error. 
 
 Thus, the arbitrageur receives $0.06 today with no chance of a future liability. Within this simple one 
period binomial world, trading pressure may simply drive up the quoted put price. Alternatively, buying 
shares may drive up the quoted stock price with some influence on the put price. Ultimately, the initial net 
cash flow must be zero. There is another arbitrage opportunity based on put call parity but we will not 
address it here. 
 Regardless of the direction of the mispricing, the ability to earn an arbitrage profit would force a price 
alignment until the option price conforms to the model price. 
 

τ


