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Module 5.4

Geometric Brownian Motion 
Option Valuation Model

(GBMOVM)
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Overview
nReview assumptions of GBMOVM
nExplore role of dividends
n Identify different representations of 
GBMOVM
nDerive the GBMOVM
nReview selected plots
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Central Finance Concepts
nGeometric Brownian motion (GBM)
nOption valuation model (GBMOVM)
nKey assumptions
nGraphical illustrations
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GBMOVM Key Assumptions
nTerminal distribution is lognormal
nRisk-free rate is constant, borrowing and 
lending allowed
nVolatility of the underlying instrument’s 
continuously compounded rate of return is 
known, positive, and constant
nEuropean-style options only
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Selected Plots
nGBMOVM values and boundaries

n Quality model should not violate arbitrage 
boundaries

n Should roughly correspond to observed 
option prices

nGBMOVM time values
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GBMOVM and Boundaries
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GBM Applied to Digital Options
nCash or Nothing (CoN): option payoff is 
a fixed digital payout (DP) if the option 
expires in-the-money 
nAsset or Nothing (AoN): a fixed number 
of units of the underlying (assumed 1 unit) 
if the option expires in-the-money
nCall=long AoN call and short CoN call
nPut=long CoN put and short AoN put
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Quantitative Finance Materials
nGBMOVM assumptions
nMathematical adjustments for dividends
nGeneric boundaries and GBMOVM
nDerivation of GBMOVM
nDigital option valuation expressions
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GBMOVM Assumptions
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Dividends
nEscrow method assumed
nAll dividends over option life extracted

nUnderlying instrument sans dividends
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Generic OVM
nGeneric option valuation
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Generic Option Boundaries
nUpper bound

nLower bound
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GBMOVM Generic Model
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Dividend Yield Only
nCall model

nPut model
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Derivation of GBMOVM
nGeometric Brownian motion

n Itô’s lemma, C(S,t),
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Risk-free portfolio design
nSell 1 call and buy delta stock

nHedged portfolio result (SFDR)

nRisk free growth implied

© Financial Risk Management, LLC 16

Π = −C + ∂C
∂S
S dΠ = −dC + ∂C

∂S
dS + q ∂C

∂S
Sdt

dΠ = − ∂C
∂ t

+ 1
2
σ 2S 2 ∂

2C
∂S 2

− q ∂C
∂S
S

⎛
⎝⎜

⎞
⎠⎟
dt

dΠ = rΠdt = r −C + ∂C
∂S
S

⎛
⎝⎜

⎞
⎠⎟
dt

16

GBM PDE
nGBM partial differential equation

nBoundary condition
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Digital (Binary) Options
nGeneric Terminal Payoffs

nGBMOVM
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Digital Terminal Payoffs
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GBMOVM and Time Value
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Summary
nReview assumptions of GBMOVM 

n Lognormal distribution
n Arbitrage (SFDR)

nExplored role of dividends
n Identified different representations of 
GBMOVM
nDerived the GBMOVM
nReviewed selected plots
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