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Module 4.3: Valuation Stocks 
Learning objectives 

• Review the traditional dividend discount model 
• Extending the traditional dividend discount model to handle practical considerations 
• Derive a robust N-stage dividend discount model that can handle multiple growth stages, multiple 

discount rates, and quarterly payments 
• Explore ways to simplify stock valuation with LSC model 

 
Executive summary 
In this chapter, we review the historical performance of the U.S. stock market. We also introduced an N-
Stage dividend discount model as well as applying the LSC model to lower the number of factors driving 
stock valuation, illustrated with R sample code. Further, we also apply the LSC valuation model and 
illustrated it with two factor LSC models applied to the cash flow growth rates and forward discount rates. 
Central finance concepts 
In this module we explore traditional dividend discount models with an effort to accommodate well-known 
attributes, such as paid quarterly but adjusted annually, apply multiple discount rates depending on a 
particular stage of dividend payments, and applying the LSC model to the present value of dividends. 
Further, we also introduce the LSC valuation model and illustrate it with two factor LSC models applied to 
the cash flow growth rates and forward discount rates. But first we make a quick review of the U.S. stock 
market history. 

Historical review of U.S. stock market 
We briefly review the historical performance of the U.S. stock market starting on December 31, 1925. The 
main insights from this section are as follows. First, on average, stock prices rise significantly over time. 
Second, the percentage returns offered on broad stock market returns is consistent over time as demonstrated 
by the log scale. Figure 4.3.1 illustrates these two insights. 
 
Figure 4.3.1 A Quick Tour of the U.S. Stock Market 
Panel A Total Return per $1 Invested in12/31/25 
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Panel B Log Scale of Total Return per $1 Invested in12/31/25 

 
 
 Third, investing in the U.S. stock market is risky. Figure 4.3.2 documents that every decade there is at 
least one significant downturn. The stock market crash of 1929 was the greatest with a net loss from the peak 
to trough of –80%. Notice, however, that had you invested $1 on December 31, 1925 you would have ended 
the next decade up about 50%. Interestingly, every single decade ends up higher at the end than at the 
beginning. Also, every decade suffered a significant decline during the decade. The number indicated in each 
graph is the rate of return loss from peak to trough. Thus, if you never want to endure double digit losses, 
then you should avoid investing in the stock market. 
 
Figure 4.3.2 Value-Weighted Returns in the U.S. Stock Market by Decade 
Panel A Total Return Over Decade Spaning 12/31/1925-12/31/1935  
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Panel B Total Return Over Decade Spaning 12/31/1935-12/31/1945  

 
Panel C Total Return Over Decade Spaning 12/31/1945-12/31/1955  
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Panel D Total Return Over Decade Spaning 12/31/1955-12/31/1965  

 
Panel E Total Return Over Decade Spaning 12/31/1965-12/31/1975  
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Panel F Total Return Over Decade Spaning 12/31/1975-12/31/1985  

 
Panel G Total Return Over Decade Spaning 12/31/1985-12/31/1995  
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Panel H Total Return Over Decade Spaning 12/31/1995-12/31/2005  

 
Panel I Total Return Over Decade Spaning 12/31/2005-12/31/2015  
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Panel J Total Return Over Decade Spaning 12/31/2015-12/31/2025  

 
 
 The key takeaway from this brief tour of the U.S. stock market is that those who are very long-term 
investors can easily see past the a significant downturn and not cash out. We now turn to introduce selected 
dividend discount models for valuing common stock. 

The Gordon single factor dividend discount model 
As discussed in Chapter 2, the traditional approach to common stock valuation is to forecast some future 
expected cash flows, typically dividends, and then to take the present value of this future expected cash flow 
stream. In 1959, Gordon argued that the appropriate discount rate increases with the degree of uncertainty 
related to the future dividend stream. Interestingly, there has been little effort to assign different discount 
rates across all dividends. Many market professionals seem to have concluded that the additional complexity 
is not worth the additional benefits. In most applications, the discount rate applied is the same for all 
dividends.  
 The dividend discount model (DDM) explored quantitatively falls within the discount factor adjusted 
approach to valuation. Recall from Chapter 2 that the DFAA method does not alter the investor’s subjective 
cash flow probability distribution, rather the risk adjustment is taken in the discount rate applied. With 
DFAA, there must be sufficient structure imposed upon the state-space to compute at least the expected 
future cash flows and the appropriate risk premium.  
 In most applications of DDMs, the single stage growth rate is insufficient. We now explore one potential 
general solution to enriching the model. 

The N-Stage dividend discount model 
Based on Brooks and Helms (1990)1 N-Stage Dividend Discount Model (NDDM), we extend their analysis 
by including stage varying discount rates as well as stage varying growth rates. The results covered in the 
quantitative section below provide a “closed-form” solution in the sense that an infinite sum is not required. 
 The NDDM comprises three parts: The initial stub period that address the portion of the current stage 
remaining until the beginning of the next stage. The series periods that comprise the finite series stages 
addressing different growth and discount rates. The final period that comprises the final infinite stage.  

 
1See “An N Stage, Fractional Period, Quarterly Dividend Discount Model,” Financial Review, 25 (November 
1990), 651-657. 
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 The NDDM is illustrated with several numerical examples and an initial effort is explored at applying the 
LSC model to the present value of dividends (PVD) function. The quantitative and coding is simply an 
illustration of the potential extensions feasible with a combination of quantitative capacity and R coding. 
 Figure 4.3.3 illustrates the four state DDM with LSC fit with 2, 3, and 4 factors. Thus, the 4 factor LSC fit 
appears adequate to model the present value of dividends. 
 
Figure 4.3.3 Four Stage Dividend Discount Model With LSC Fit 
Panel A: Two Factor LSC Model Fit 

 
 
Panel B: Three Factor LSC Model Fit 
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Panel C: Four Factor LSC Model Fit 

 
 

LSC valuation model based on growth rates and forward discount rates 
The LSC valuation model presented here is parsimonious and has numerous applications. For example, this 
approach can be applied to valuing common stocks as well as the entire firm. Our focus here will be on some 
generic instrument valuation, but it is straightforward to reframe it for other valuation tasks. Specifically, the 
presentation assumes some generic valuation task involving an expected future series of cash flows with 
known positive initial cash flow. If the initial known cash flow is zero or negative, then some simple 
modifications will be necessary but are not covered here. 
 We illustrate this approach assuming annual cash flows avoiding the nuances of quarterly payments. We 
assume cash flow rates are modeled within the LSC model framework. Specifically, we estimate the 
perpetual (level) growth rate, the short-term (slope) growth rate, and as many growth rate curvature factors as 
desired. In a similar fashion, we assume forward discount rates can also be modeled within the LSC model 
framework. Specifically, we estimate the perpetual (level) forward discount rate, the short-term (slope) 
forward discount rate, and as many forward discount rate curvature factors as desired.  
 This deployment of the LSC model is illustrated with the broad market ETF as well as several sector 
ETFs. We demonstrate interesting differences between these ETFs based on this unique perspective. 
 
Quantitative finance materials 
After a quick quantitative review of the Gordon single index DDM, we explore a more robust dividend 
discount model that addresses the salient factors related to actual dividend-paying stocks. We then turn to a 
unique application of the LSC model to stock valuation. 

Gordon’s single factor dividend discount model 
From Chapter 2, we had the value of some financial instrument or portfolio as 

 , (4.3.1) 

where pt,j denotes the subjective probability based on a particular individual’s perspective on future cash 
flows occurring at time t when state j occurs. For the application to common stocks (VS) developed here, we 
assume the investor has a forecast of the expected future dividends. Thus, we have 

 , (4.3.2) 

Pi =
1

1+ rt + RPi,t , j( )t
pt , jCFi,t , j

j=1

m

∑
t=1

T

∑

VS ≡ PV τ i ,t( ) Et D τ i ,t( )⎡⎣ ⎤⎦{ }
i=1

∞

∑ = DPVi
i=1

∞

∑
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where  denotes the present value of the ith dividend occurring  years in the future and  
denotes the uncertain ith dividend amount. Thus, the value of a stock today is simply the sum of the present 
value of all expected future dividend payments (DPVi). 
 One simple application of this approach is known as the Gordon Growth Model. In this case, expected 
dividends are assumed to be paid annually, are assumed to grow as some constant growth rate, g, and these 
expected dividend payments are discounted at a constant rate, k. With these assumptions, we have 

 . (4.3.3) 

The discount rate is the cost of equity capital or the investor’s required rate of return. The typical way the 
investor’s required return is estimated is by using the risk-free rate plus a risk premium. One example is the 
Capital Asset Pricing Model (CAPM) which can be expressed here as 

 , (4.3.4) 

where r denotes the risk-free rate, rM denotes the return on the market portfolio, and � denotes the 
sensitivity of this stock to changes in the excess expected return of the market portfolio over the risk free 
rate. 

The N-Stage dividend discount model 
Recall from Equation (4.3.2) that VS denotes the underlying instrument value at calendar time, t, as a function 
of the present value of expected future cash payments. We first review critical assumptions. Next, we provide 
an exhaustive notation list for convenience. Finally, we develop the NDDM. 
Assumptions 

• Dividends are paid quarterly at the time points in time each year, and further, the maturity time 
between payments is constant,  

• N stages of constant, continuously compounded, dividend growth (gi) with corresponding constant, 
continuously compounded, discount rate (ki), 

• Initial maturity time is zero, , 

• By construction, initial growth rate is zero (as model next dividend payment), , 
• Each stage is for ml years except the last stage, mN has infinite payments, 
• Dividends are constant for four quarters (1 year), and 
• H dividends remain for the current year (H ≤ 4). 

Detailed Notation 
t – current time, expressed as a fraction of a year, 
N – number of stages, 
i – counter of quarterly dividends, 
y – dividend years, y = 0 denotes current dividend year with up to 4 quarterly dividends remaining, 
DPVi – present value of quarterly dividend i, 
Py – present value of dividends paid in year y (not just one dividend, usually 4), 
PVy – present value of $1 paid at last dividend in year y, 
Dy – quarterly dividend paid in year y, 
D–1 – last paid quarterly dividend, 

 – time until next dividend payment at time t, 

 – time between two dividend payments (q > 1) at time t, 
 – four quarterly periods is one year, 

 – annualized, continuously compounded, forward discount rate appropriate for year y, 

PV τ i ,t( ) τ i D τ i ,t( )

VS =
D0 1+ g( )
k − g

k = r + β E rM( )− r⎡⎣ ⎤⎦

Δτ = Δτ j = τ j −τ j−1

τ 0 = 0
g0 = 0

Δτ1 = τ1
Δτ q = τ q −τ q−1 = Δτ
4Δτ = 1
f y
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 – annualized, continuously compounded, dividend growth rate appropriate for year y applied to the 
quarterly dividend payment, and 
mj – number of years for stage mj. 

Infinite and finite series with continuous compounding 
With continuously compounded forward rates as well as continuously compounded growth rates, we note the 
following well-known results: 

  and (Infinite series) (4.3.5) 

 . (Finite series) (4.3.6) 

Proof: Expanding the infinite series, 

 . 

Dividing by e-x, 

 . 

Taking the difference, 

 . 

Substituting, 

 . 

Rearranging, 

 . 

Thus, solving for , 

 . 

The finite series result is just the difference between two infinite series results, factoring e–x(N). 
N-stage dividend discount model development 
The present value of dividends paid in the current dividend year (y = 0, stub year) can be expressed as 

 . (4.3.7) 

Every quarter is assigned to have 0.25 years between dividend payments except for the initial period. Thus, 
Δτk = 0.25 except for k = 1. The initial time period, k = 1, we note Δτ1 = τ1 ≤ 0.25. The time summation 
accounts for the first stub period. The present value of $1 at the end of year 0 is  

 . (4.3.8) 

gy

B∞ = e− x i( )
i=1

∞

∑ = 1
ex −1

BN = e− x i( )
i=1

N

∑ = 1− e
− x N( )

ex −1

B∞ = e− x i( )
i=1

∞

∑ = e− x + e−2x + e−3x + ...

B̂∞ =
B∞

e− x
= 1+ e− x + e−2x + ...

B̂∞ − B∞ = 1

B̂∞ − B∞ =
B∞

e− x
− B∞ = 1

B̂∞ − B∞ = B∞

1
e− x

−1
⎛
⎝⎜

⎞
⎠⎟
= B∞

1− e− x

e− x
= 1

B∞

B∞ = e− x

1− e− x
= 1
ex −1

P0 = D−1 e
− f0 Δτ k

k=1

q

∑

q=1

H

∑

PV0 = e
− f0 Δτ k

k=1

H

∑
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 For example, suppose there are two quarters left in this dividend year (H = 2). Assuming Δτ1 = τ1 = 0.1, 
D–1 = $1, and f0 = 10%, we have the present value of all dividends paid in the stub year is 

 . (4.3.9) 

and the present value of the last dividend paid in the stub year is 

 . (4.3.10) 

 For all subsequent years (y > 0), there are four constant dividend payments each made Δτ1 = 0.25 from the 
prior dividend payment. The present value at the end of the last year (beginning of year y) of the four 
dividend payments in year y is  

 . (4.3.11) 

Dividend growth implies  and PVy–1 is the present value of cash flows received at time , the 
time of the last dividend paid in year y – 1. Thus, the present value of the four dividends paid in year y can be 
expressed as 

 . (4.3.12) 

Recall , thus rearranging, 

 . (4.3.13) 

 Note  is the present value of the last dividend paid in the prior year. Let the present value of the 
last dividend in the prior year grossed up by the future value of a $1 annuity over the next year be expressed 
as 

 . (4.3.14) 

Thus, the present value of the dividends in one particular year can be bootstrapped from the prior year simply 
as 

 . (4.3.15) 

 Note that  is not .  is the present value of the last dividend in the prior year grossed up by the 

future value of a $1 annuity over the next year, a convenient notation for analysis below. Recall  is the 
present value of the dividends paid in year y – 1. 
 For example, given the data above where there are two quarters left in this dividend year (H = 2), Δτ1 = τ1 
= 0.1, D–1 = $1, and f0 = 10%. We further assume a dividend growth rate of 5%. Thus, for the first full year 
of Stage 1, we have the present value of the four dividends paid is 

P0 = D−1 e
− f0 Δτ k

k=1

q

∑

q=1

H

∑ = $1 e−0.1 0.1( ) + e−0.1 0.1+0.25( )⎡
⎣

⎤
⎦ = $0.990050+$0.965605 = $1.955655

PV0 = e
− f0 Δτ k

k=1

H

∑
= $1e−0.1 0.1+0.25( ) = $0.965605

Dy e
− f yΔτ 1( ) + e− f yΔτ 2( ) + e− f yΔτ 3( ) + e− f yΔτ 4( )⎡

⎣
⎤
⎦

Dy = Dy−1e
gy τ y−1

Py = PVy−1 Dy−1e
gy( ) e− f yΔτ 1( ) + e− f yΔτ 2( ) + e− f yΔτ 3( ) + e− f yΔτ 4( )⎡

⎣
⎤
⎦

4Δτ = 1

Py = PVy−1Dy−1 e
fyΔτ 3( ) + e fyΔτ 2( ) + e fyΔτ 1( ) +1⎡

⎣
⎤
⎦e

− f y−gy( )

PVy−1Dy−1

Py− ≡ PVy−1Dy−1 e
fyΔτ 3( ) + e fyΔτ 2( ) + e fyΔτ 1( ) +1⎡

⎣
⎤
⎦

Py = Py−e
− f y−gy( )

Py− Py−1 Py−
Py−1
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 . (4.3.16) 

Thus, the present value of dividends in year 1 at the beginning of the first full year (y = 1) is 
 and thus the present value at time t is $3.815928. 

Stage N 
The beginning of the first dividend year in the Nth stage is nN years from the evaluation date or 

 . (4.3.17) 

For example, assume N = 3 stages, H = 2 quarters, m1 = 5 years, and m2 = 10 years. Thus, nN = 15 and the 
final stage would begin at the end of quarter 62 [= 15(4) + 2]. Stage 1 would begin at the end of quarter 2 
(start of quarter 3). Stage 2 would begin at the end of quarter 22 (start of quarter 23). 
 Stage N present value is (based on the infinite series results above) 

 . (4.3.18) 

Stage j (j<N) 
For stage j (j < N), we have (based on the finite series results above) 

 ,  (4.3.19) 

where  denotes the present value at fj (appropriate discount rate for stage j) applied for mj years. 

 
N-Stage dividend discount model 
Combining the results, we have 

 . (4.3.20) 

Thus, the value of the stock at time t is simply the present value of the infinite sum of future dividends. With 
the N-stage dividend discount model (NDDM), we reduce the infinite sum of present values of each future 
dividend payment ( ) to the present value of the stub period ( ) plus the present value of N sets of 

dividend payments ( ).  
 Substituting back to the original inputs, we have 

 . (4.3.21) 

Further substitutions yields the closed-form NDDM: 

P1 = PV0D0 e
f1Δτ 3( ) + e f1Δτ 2( ) + e f1Δτ 1( ) +1⎡

⎣
⎤
⎦e

− f1−g1( )

= 0.965605 $1( ) e0.1 0.25( ) 3( ) + e0.1 0.25( ) 2( ) + e0.1 0.25( ) 1( ) +1⎡
⎣

⎤
⎦e

− 0.1−0.05( )

= $0.965605 1.077884+1.051271+1.025315+1⎡⎣ ⎤⎦0.951229

= $0.965605 4.154470( )0.951229 = $3.815928

$3.951852 = $1 4.154470( )0.951229

nN = ml
l=1

N−1

∑

ŜN = PnN − e− fN −gN( )i

i=1

∞

∑ = PnN −
1

e fN −gN( ) −1

Ŝ j = Pnj− e− f j−g j( )i
i=1

mj

∑ = Pnj−
1

e f j−g j( ) −1
− P

nj+mj( )−
1

e f j−g j( ) −1
= Pnj−

1− e f j−g j( )mj

e f j−g j( ) −1

PVmj

VS = Pi
i=1

∞

∑ = P0 + Ŝ j
j=1

N

∑ = P0 + Pnj−
1− e− f j−g j( )mj

e f j−g j( ) −1j=1

N−1

∑ + PnN −
1

e fN −gN( ) −1

Pi P0
Ŝ j

VS = P0 + PVnj−1Dnj−1 e
f jΔτ 3( ) + e f jΔτ 2( ) + e f jΔτ 1( ) +1⎡

⎣
⎤
⎦
1− e− f j−g j( )mj

e f j−g j( ) −1j=1

N−1

∑

+PVnN −1DnN −1 e
fNΔτ 3( ) + e fNΔτ 2( ) + e fNΔτ 1( ) +1⎡

⎣
⎤
⎦

1
e fN −gN( ) −1
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 . (4.3.22) 

Rearranging and simplifying, the NDDM contains three components: 

 , (Stub Component) (4.3.23) 

,(Series Component)(4.3.24) 

. (Final Component) (4.3.25) 

The N-stage DDM can be expressed simply as 

 . (4.3.26) 

We now take this model out for a test drive. 
 
N-stage dividend discount model examples 
To illustrate the NDDM, we briefly compute stock valuations for three cases, one stage no growth model, 
one stage growth model, and two stage growth model. With this foundation, the NDDM can easily be 
deployed with as many stages as required. 
 One stage no growth model (N = 1, g = 0): Suppose the dividend growth rate is zero (N = 0, g = 0) and 
there are two quarters left in this dividend year (H = 2). Assuming Δτ1 = τ1 = 0.1, D–1 = $1, and f0 = 10%, we 
have 

 . (4.3.27) 

Or in this particular case, 

VS = D−1 e
− f0 Δτ k

k=1

q

∑

q=1

H

∑

+ e
− f0 Δτ k

k=1

H

∑
e− fimi

i=1

j−1

∏
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
D−1 egimi

i=1

j−1

∏⎛
⎝⎜

⎞
⎠⎟
e f jΔτ 3( ) + e f jΔτ 2( ) + e f jΔτ 1( ) +1⎡
⎣

⎤
⎦
1− e− f j−g j( )mj

e f j−g j( ) −1j=1

N−1

∑

+ e
− f0 Δτ k

k=1

H

∑
e− fimi

i=1

N−1

∏
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
D−1 egimi

i=1

N−1

∏⎛
⎝⎜

⎞
⎠⎟
e fNΔτ 3( ) + e fNΔτ 2( ) + e fNΔτ 1( ) +1⎡
⎣

⎤
⎦

1
e fN −gN( ) −1

Stub = D−1 e
− f0 Δτ k

k=1

q

∑

q=1

H

∑

Series = D−1e
− f0 Δτ k

k=1

H

∑
e− fi−gi( )mi

i=1

j−1

∏⎡
⎣
⎢

⎤

⎦
⎥ e

f jΔτ 3( ) + e f jΔτ 2( ) + e f jΔτ 1( ) +1⎡
⎣

⎤
⎦
1− e− f j−g j( )mj

e f j−g j( ) −1j=1

N−1

∑

Final = D−1e
− f0 Δτ k

k=1

H

∑
e− fi−gi( )mi

i=1

N−1

∏⎡
⎣
⎢

⎤

⎦
⎥ e

fNΔτ 3( ) + e fNΔτ 2( ) + e fNΔτ 1( ) +1⎡
⎣

⎤
⎦

1
e fN −gN( ) −1

VS = Stub+ Series+ Final

VS = Pi
i=1

∞

∑ = P0 + Ŝ j
j=1

1

∑ = Ŝ0 = D−1 e
− f0 Δτ k

k=1

q

∑

q=1

H

∑ + P1− e− f0Δτq
q=1

∞

∑

= D−1 e
− f0 Δτ k

k=1

q

∑

q=1

H

∑ + PV0D0 e
f1Δτ 3( ) + e f1Δτ 2( ) + e f1Δτ 1( ) +1⎡

⎣
⎤
⎦
1

e f1 −1

= D−1 e
− f0 Δτ k

k=1

q

∑

q=1

H

∑ + D−1e
− f0 Δτ k

k=1

H

∑
e f0Δτ 3( ) + e f0Δτ 2( ) + e f0Δτ 1( ) +1⎡
⎣

⎤
⎦
1

e f0 −1
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 . (4.3.28) 

 One stage growth model (N = 1, g > 0): Suppose this one stage dividend growth rate is 5% (N = 1, g = 
5%) and there are two quarters left in this dividend year (H = 2). Assuming Δτ1 = τ1 = 0.1, D–1 = $1, f0 = 
10%, and f1 = 12%, we have 

 . (4.3.29) 

Or in this particular case, 

 .(4.3.30) 

 Two stage model (N = 2): Suppose this two stage model has dividend growth rates of 5% (Stage 1) and 
2% (Stage 2) (N = 2, g1 = 5%, g2 = 2%). There are two quarters left in this dividend year (H = 2) and 5 years 
in Stage 1. Assuming Δτ1 = τ1 = 0.1, D–1 = $1, f0 = 10%, f1 = 12%, and f2 = 9% we have 

 . (4.3.31) 

VS = D−1 e
− f0 Δτ k

k=1

q

∑

q=1

H

∑ + D−1e
− f0 Δτ k

k=1

H

∑
e f0Δτ 3( ) + e f0Δτ 2( ) + e f0Δτ 1( ) +1⎡
⎣

⎤
⎦
1

e f0 −1

= $1 e−0.1 0.1( ) + e−0.1 0.1+0.25( )⎡
⎣

⎤
⎦ +$1e

−0.1 0.1+0.25( ) e0.1 0.25( ) 3( ) + e0.1 0.25( ) 2( ) + e0.1 0.25( ) 1( ) +1⎡
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Or in this particular case, 

 . (4.3.32) 

 Three stage model (N = 3): Now suppose a three stage model has dividend growth rates of 6% (Stage 1), 
3% (Stage 2), and 0% (Stage 3) (N = 3, g1 = 5%, g2 = 2%, and g3 = 0%). There are two quarters left in this 
dividend year (H = 2), 5 years in both Stage 1 and Stage 2. Assuming Δτ1 = τ1 = 0.1, D–1 = $1, f0 = 10%, f1 = 
12%, f2 = 9%, and f3 = 6%, Table 4.3.1 is generated by the R program: 
 
Table 4.3.1. Three stage dividend discount model 

 
 
 Four stage model (N = 4): Now suppose a four stage model has dividend growth rates of 6% (Stage 1), 
3% (Stage 2), 1% (Stage 3), and 0% (Stage 4) (N = 4, g1 = 5%, g2 = 2%, g3 = 1%, and g4 = 0%). There are 
two quarters left in this dividend year (H = 2), 5 years in Stage 1, Stage 2, and Stage 3. Assuming Δτ1 = τ1 = 
0.1, D–1 = $1, f0 = 10%, f1 = 12%, f2 = 9%, f3 = 7%, and f4 = 6%, Table 4.3.2 is generated by the R program: 
 
Table 4.3.2. Four stage dividend discount model 

 
 
We now turn to an innovative application of the LSC model to the present value of dividend payments. 

Applying the LSC model to the present value of expected dividend payments 
From Module 4.1 and 4.2, we learned the mechanics of the LSC model applied to bond yields. We now apply 
the LSC model to the present value of dividends for a single stock. The four stage model above is illutrated 
in Figure 4.3.4. The jaggedness near zero highlights the assumption that dividends are changes once per year 
at a stated growth rate and the four quarterly dividends are based upon it. Thus, higher dividends will result 
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+0.965605 0.548811( ) 1.069830+1.046028+1.022755+1( )13.791582
= 1.955655+ 0.965605 4.186466( )4.072818
+0.965605 0.548811( ) 1.284025( )4.138613 13.791582( )
= 1.955655+16.464256+ 38.838714 = $57.258625
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in higher present values but as we move out into the future the discounting effect dominates. Thus, except for 
the first few years, the present value function is relatively smooth. Thus, the LSC model may help in factor 
reduction. 
 
Figure 4.3.4 Present Value of Dividends Based on Four Stage Model 

 
 
Thus, applying the LSC model, we have 

 , (4.3.33) 

where yPVD,i denotes some input maturity time variables such as an interest rate for some maturity 
corresponding to i, xi,j denotes input LSC coefficients based on some maturity and some factor, and fj denotes 
the output factors. Like the LSC model in general form, this LSC model application assumes 

 , , and , (4.3.34) 

where the variables are as previously defined in Module 3.5. We illustrate this LSC model fit with several 
different number of factors in the coding section below. 

LSC valuation model based on growth rates and forward discount rates 
We assume a generic valuation task involving an expected future series of cash flows (CFi) with known 
positive initial cash flow (CF0). If the initial known cash flow is zero or negative, then some simple 
modifications will be necessary but are not covered here. 
 We illustrate this approach assuming annual cash flows avoiding the nuances of quarterly payments. We 
assume cash flow rates (gi) are modeled within the LSC model framework. Specifically, we estimate the 
perpetual (level) growth rate, the short-term (slope) growth rate, and as many growth rate curvature factors as 
desired. In a similar fashion, we assume forward discount rates (fi) can also be modeled within the LSC 
model framework. Specifically, we estimate the perpetual (level) forward discount rate, the short-term 
(slope) forward discount rate, and as many forward discount rate curvature factors as desired.  
 Based on the notation introduced above, the asset value (V) can be expressed as 

 . (4.3.35) 

yPVD ,i = xi, j f j
j=0

N

∑

xi,0 = 1 xi,1 =
s1
τ i
1− e−τ i s1( ) xi, j =

s j
τ i
1− e−τ i s j( )− e−τ i s j ; j >1
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e

g jτ j
j=1
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∑

e
f jτ j

j=1
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∞
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∞
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j=1

i

∑

i=1

∞

∑



 
© 2023 Robert Brooks. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. 

18 

We illustrate this approach with a two factor LSC model for both the growth rate and forward discount rate. 
Each rate is estimated based on the LSC model as (here we let f0 = Lg or Lf and f1 = Sg or Sf) 

  and (4.3.36) 

 , (4.3.37) 

where (we consider the possibility where the scalar for the expected cash flow growth rates is different from 
the scalar for the forward discount rates) 

  and (4.3.38) 

 . (4.3.39) 

Substituting Equations (4.3.36) and (4.3.37) into Equation (4.3.35), we have 

 . (4.3.40) 

Equation (4.3.40) is an elegant yet concise way to express instrument valuation. 
 The level parameter for the growth rate could be estimated based on some long-term base interest rate, 
such as the fixed rate on the 30-year Libor-based interest rate swap. A company would not be expected to 
sustain a growth rate in excess of the base perpetual interest rate. A company would also not be expected to 
survive if they could not sustain a growth rate at least equal to the base perpetual interest rate. 2 
 We now explore some ideas related to the level forward discount rate. Note by rearranging Equation 
(4.3.40), we have 

 . (4.3.41) 

We can express the value per unit of cash flow (VCF) as 

 . (4.3.42) 

Note, we often have the cash flow yield as an input, denoted cy. Thus, 

 . (4.3.43) 

As maturity tends to positive infinity, the slope regression independent variables tend to zero or 

  and (4.3.44) 

 . (4.3.45) 

 
2See Aswath Damodaran’s CFA Institute’s 2020 Annual Conference presentation. He uses the 10-year U.S. 
Treasury rate with a two stage model. See https://annual.cfainstitute.org/speakers/aswath-damodaran/.  
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∞
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 For some very distant maturity (n), the VCF ratio will tend to (where the indicator function, i, increments 
from the future point in time, n, or 

 . (4.3.46) 

Multiply both sides by , we get 

 . (4.3.47) 

Subtracting Equation (4.3.46) from Equation (4.3.47), we have simply 

  or 

 . (4.3.48) 

If we assume the long run growth rate is proxied by some long run base interest rate ( ), then we can infer 

the long run forward discount rate ( ), based on an estimate of a financial instrument’s long run projected 

VCF, denoted , or 

 . (4.3.49) 

 Thus, we assume that VCF ratio will mean revert to the average VCF ( ), but they do not necessarily 
completely revert. Rather we can assume a dampener, D, where 

 . (4.3.50) 

Finally, as maturity tends to zero, the slope regression independent variables tend to one or 

 . (4.3.51) 

Similarly, 

 . (4.3.52) 

Thus, the remaining tasks for the analyst is to estimate reasonable values for the slope coefficients, Sg and Sf, 
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 . (4.3.53) 

 The entire valuation exercise is reduced to estimating four critical values based on a two factor LSC 
valuation model. Clearly, one can easily assume more factors that would require more parameter estimates. 
LSC valuation model application to exchange-traded funds tied to the S&P 500 index 
The LSC valuation model is illustrated with the broad market ETF with ticker symbol SPY that seeks to 
replicate the performance of the S&P 500 index including dividends. Further, we also examine nine sector or 
industry ETFs that seek to replicate sectors of the S&P 500 index including dividends. Table 4.3.3 presents 
the inputs required for the two factor LSC valuation model. DY denotes the dividend yield and DR denotes 
the estimated annually compounded discount rate. 
 
Table 4.3.3. Two factor LSC valuation model inputs 

 
 
Selected other inputs are provided in Table 4.3.4, where Nf denotes number of factors, sG0 denotes the scalar 
applied to the LSC model for growth rates, sF0 denotes the scalar applied to the LSC model for forward 
discount rates, Lg denotes the assumed level growth rate for all instruments, and D denotes the damper 
required in Equation (4.3.50). 
 
Table 4.3.4. Two factor LSC valuation model inputs 

 
 
 The goal here is to calibrate the two factor LSC valuation model based on these inputs. We proceed with 
two iterations. 
Iteration 1: Solve for slope of growth rate 
Assuming a constant discount rate (k), we solve for implied slope of the expected future cash flow, Sg, where 

 . (4.3.54) 

 For example, for the Broad Market (SPY), we substitute the known values and have 

 . (4.3.55) 
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Solving for Sg, we find = 0.096179 or 9.6179%. Remember, a positive slope number implies a downward 
sloping growth rate curve. Figure 4.3.5 illustrates the growth rates for the first 30 year based on this 
parameterization of the LSC model. 
 
Figure 4.3.5 Illustration of the LSC model applied to growth rates with the Broad Market (SPY) 

 
 
 With the estimate of Sg, we are ready to solve for the final parameter, Sf. 
Iteration 2: Solve for slope of forward discount rate 
Given results from Iteration 1, we now address estimating forward discount rate. First, we focus on 
estimating the forward discount rate level, . Based on the data provided on the sector ETFs, we have 

 . 

Solving for the forward discount rate level parameter, we have 

 . 

 Thus for the Broad Market (SPY), we substitute the known values and have 

 . (4.3.56) 

Solving for Sf, we find = –0.023815 or –2.3815%. A negative slope number implies an upward sloping 
forward discount rate curve. Figure 4.3.6 illustrates the forward discount rates for the first 30 year based on 
this parameterization of the LSC model. 
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Figure 4.3.6. Illustration of LSC model applied to forward discount rate with the Broad Market (SPY) 

 
 
Fully calibrated model 
The fully calibrated model can be expressed as 

 . (4.3.57) 

 . (4.3.58) 

 Figure 4.3.7 presents the first 30 years of growth rates. 
 
Figure 4.3.7. Growth rates based on LSC model 

 
 
 Figure 4.3.8 presents the first 30 years of forward discount rates. 
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Figure 4.3.8. Forward discount rates based on LSC model 

 
 
Table 4.3.5 reports the results for the fully calibrated LSC model. GSlope denotes the fitted LSC model slope 
parameter for growth and similarly WSlope denotes the fitted LSC model slope parameter for forward 
discount rates. WLevel is the fitted LSC model level parameter for forward discount rates.  
 
Table 4.3.5. Calibrating the LSC Model 

 
 
 Recall from the Model Inputs tab, we assumed the growth scalar was 3 years, the forward discount rate 
scalar was 10 years, the long-run growth rate was 2.5% (GLevel), and the damper was 50%. With this robust 
model, we are now ready for scenario analysis, sensitivity analysis, and/or Monte Carlo simulations. 
 
Summary 
In this chapter, we reviewed the historical performance of the U.S. stock market. Further, we introduced an 
N-Stage dividend discount model as well as applying the LSC model to lower the number of factors driving 
stock valuation. Ee also apply the LSC valuation model and illustrated it with two factor LSC models applied 
to the cash flow growth rates and forward discount rates. 
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