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Module 3.7

Numerical Integration and the 
Lognormal Distribution
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Overview
nExplore numerical integration

n Lognormal distribution
n Normal distribution
n Deep dive into properties as applied in finance

nNumerous comparisons and contrasts
nBivariate distributions

© Financial Risk Management, LLC 2

2

Univariate Distributions

nCumulative distribution function (CDF)
                                              (generic)

                                               (continuous)
nProbability density function (continuous)
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FX x( ) ≡ Pr X ≤ x( )

FX x( ) = f X j( )dj
−∞

x

∫

f X j( )
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Lognormal Distribution
nParameters:     (Mean),     (Std. Dev.)
nLimits

n Mean:
n Standard deviation:      > 0
n Range:

nNote: x cannot equal zero 
n If y = ln(x) is normally distributed (ND), then 
x is said to have a lognormal distribution (LD)
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µ σ

−∞ < µ < +∞
σ

0 < x < +∞
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ND and LD CDF and PDF

nCDF:

nPDF:
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nMedian:

nMode: f’(x) = 0 and f’’(x) < 0

nMean: 

Median, Mode, Mean
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Variance and Skewness
nVariance:

nSkewness:

nNormalized Skewness:
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Kurtosis
nKurtosis:

nExcess kurtosis:
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Asset Price Distributions

n If                     (g denotes generic) and
       , then                  
nRates of return:  
nDistribution of returns:

nDistribution of prices:
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x ~ N µg ,σ g( )
y = ex y ~ Λ µg ,σ g( )

ST = Ste
R T−t( )

R ~ N µ T − t( ),σ T − t⎡
⎣

⎤
⎦

ST ~ Λ ln S0( )+ µ T − t( ),σ T − t⎡
⎣

⎤
⎦
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Asset Price Distribution

nTerminal stock prices:

nReturns:
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E ST( ) = S0e
µ+σ
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Asset Price Distributions

nSuppose S = 100, T = 1,           , s = 30%
n Intend:
nTwo versions:
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µ̂ = 12
E ST( ) = S0eµ̂ T−t( ) = 100e0.12 1( ) = 112.749685
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Asset Price Distributions
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Role of Standard Deviation

n Increasing return standard deviation 
(volatility) implies terminal price has

n Increasing mean
n Constant median
n Decreasing mode
n Increasing skewness
n Increasing likelihood of very low values
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Probability Call In-The-Money
nTerminal stock price:

nProbability:
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σ 2
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Multivariate Distributions

nFinance suffers from “curse of dimensionality”
nS&P 500 index 

n Technically a 500 dimensional problem (each stock)
n Each stock has multiple factors or dimensions
n Quants aggressively seek to reduce dimensionality
n In practice, one rarely gets the dimensions down to only 

one. Hence, we need the capacity to model multiple 
dimensional problems. 
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Multivariate Normal

nPDF:

n If                  and         , then
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nN x µ,Σ( ) = e
−
x−µ( )′ Σ−1 x−µ( )
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x ~ N µ,Σ( ) y = ex
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Bivariate PDFs and CDFs

nNormal:

nLognormal:
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Bivariate Lognormal Simulation
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Conditional Normal Distribution

nNote

nThus, 
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n x2 | x1( ) = e
−
x2− µ2+ρ
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Contrasting ND and LD

nNext several graphs generated in R illustrate 
role of volatility on

n PDFs
n CDFs
n Mean, Median, and Mode
n Simulations
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Summary

nExplored numerical integration
n Lognormal distribution
n Normal distribution
n Deep dive into properties as applied in finance

nNumerous comparisons and contrasts
nBivariate distributions
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