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Chapter 3. Quantitative Finance Tools 
“Beware (of) geeks bearing gifts.” Stephen Harper (1994)1 

Introduction 
In this chapter, we introduce several important quantitative tools and illustrate how they are used in finance. 
One of the critical aspects of most financial analysis is time measurement. Module 3.1 reviews a variety of 
issues related to calendar-based calculations. Module 3.2 introduces the standard normal cumulative 
distribution estimation, N(d), widely used in option valuation and its related inverse, N–1(d), widely used with 
dynamic risk measures (DRMs), such as value-at-risk. Monte Carlo simulations are at the heart of numerous 
DRMs and thus are thoroughly reviewed in Module 3.3.  
 Throughout this material, we seek to apply Occam’s razor where we seek the simplest solution with the 
minimal number of related factors. Instrumental in this approach is the LSC model denoted for level, slope, 
and curvatures or LSC. Module 3.4 introduces the LSC model and thoroughly applies it to various term 
structure of interest rates. 
 Module 3.5 briefly introduces data sorting as well as selected data insights related to stock prices. Many 
finance applications involve solving for embedded parameters, so we introduce useful solving routines. One 
example is solving for the yield to maturity for a bond. We explore embedded parameter estimation in 
Module 3.6. 
 We conclude this chapter, with exhaustive coverage of the normal and lognormal distributions as they are 
the most widely used in finance. 
 
  

 
1Quoted by Don Chance at his very popular web site that contains numerous great quotes. See 
http://www.bus.lsu.edu/academics/finance/faculty/dchance/MiscProf/DerivaQuote/Qt16.htm. 
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Module 3.1: Managing the Calendar 
Learning objectives 

• Contrast the 30/360 day count method with the ACT/365 day count method 
• Explain day counting with each date having a separate, sequential integer value 

Module overview 
Investments can be defined as the reallocation of consumption through time. Time is easy to describe in 
generic terms, but there are several complexities that arise when dealing with specific cases. The 
philosophical issues related to time are set aside here and the focus is on calculating the number of days 
between two dates by two methods. 
 Central to most finance calculations is the movement of money through time. For example, to compute 
the present value or future value, you need to know the length of the period for the computation. There are 
numerous different approaches for calculating the number of days between two dates and there are numerous 
different approaches for calculating the total number of days in a single year. Often, one wants to compute 
the fraction of the year.  
 For bonds, this day count is used to compute the number of days in accrued interest and the number of 
days in a coupon period. For financial derivatives, the method of counting days has an important influence on 
some derivative instrument’s valuation. 
 Meticulously accounting for day count and payment frequency is very important. For example, consider a 
5 percent rate environment and quarterly pay interest rate swap with $100,000,000 notional amount and 10-
year term. If the fixed leg of the swap is actual days divided by a 360 day year, the floating leg of the swap is 
30 day months divided by a 365 day year, then over $1,500,000 of swap value is attributable to just day 
counting differences.  
 Two popular day types are referred to as “ACT/365” and “30/360”. Understanding these two basic types 
will be foundational in understanding all of the other types. 
Day type ACT/365 
Intuitively, this method is easy to grasp. You compute the literal number of days between two dates. To 
arrive at the fraction of a year, you divide by 365 (that is, ignore leap year). 
 Counting days is rather tedious and most software packages contain modules that take care of day 
counting computation for you. These modules typically use the ‘Julian’ date method. The Julian method 
converts each day to an integer and the difference between these integers give you the correct day count.  
Day type 30/360 
This day counting convention is much less intuitive. The general assumption is that each month has 30 days 
and hence a year has 360. Obviously, this is not the case and so some adjustments are incorporated. We 
adopt the following notation: 
  M1 – month of first date,         M2 – month of second date, 
  D1 – day of first date,              D2 – day of second date, 
  Y1 – year of first date, and      Y2 – year of second date. 
The following adjustments are required: 

1. If D1 and D2 are the last day of February (leap year - 29, non-leap year - 28), then change D2 to 30. 
2. If D1 is the last day of February, then change D1 to 30. 
3. If D1 is 30 or 31 and D2 is 31, then change D2 to 30. 
4. If D1 is 31, then change D1 to 30. 

 After these adjustments, the number of days between two dates is  
  Day Count = (Y2 – Y1) * 360 + (M2 – M1) * 30 + (D2 – D1). 
For example, assume the first date is September 11, 2015, and the second date is December 15, 2015. No 
adjustments are required, and the number of days is 
  Day Count = (2015 – 2015) * 360 + (12 – 9) * 30 + (15 – 11) = 94. 
 Several additional points must be remembered. First, the number of days in the year is always 360 
regardless of whether it is a leap year or not. Second, the number of days in a period is always 360 divided 
by the number of periods in a year. For example, if a bond pays quarterly, then the number of days in a 
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quarter is 360/4 = 90. Third, the day count procedure is used to compute accrued interest within a period. 
Hence, the remaining days in a period is just the number of days in the period minus the number of days that 
have accrued. This point will be covered in more detail when we discuss interest calculations. 
Selected other day types 
There are a vast number of other day types and day counting conventions. Here a just a few. 
 ACT/ACT: This day type requires the actual number of days be computed for the period as well as the 
accrual days. Hence, a leap year would make a difference. 
 ACT/360: This day type requires the actual number of days be computed for the accrual period but 
assumes a 360 day year. Eurodollar futures contracts use this method. 
 30/ACT: This day type requires the actual number of days be computed for the entire period, but the 
accrual period is computed using the 30/360 method. 
 30/365: This day type requires the 30/360 method for the accrual period but assumes a 365 day year. 
End-of-month rule 
Almost all debt securities maturing at the end-of the month followed what is called the end-of-month rule. 
For example, if a U.S. Treasury security matures on June 30th and is semi-annual coupon paying, then the 
other coupon date is December 31st. Historically, some securities issued by the Federal Home Loan Bank do 
not follow the end-of-month rule. For these securities, if they are semi-annual coupon paying and it matures 
on June 30th, then the other coupon date is December 30th. It is important to pay attention to the details. 
 Several other calendar functions could be developed. Figure 3.1.1 illustrates the future dollar value of the 
difference between ACT/360 day count and ACT/365 day count with a 5% interest rate, quarterly 
compounding and $1 million notional amount. Clearly, day counts are an important consideration. 
 
Figure 3.1.1 Future dollar value difference between ACT/360 day count and ACT/365 
Five percent interest rate, quarterly compounding, and $1 million notional amount 
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Module 3.2. Cumulative Normal Distribution Function and its Inverse 
Learning objectives 

• Explain how to compute the cumulative distribution function of the normal distribution 
• Understand approximations for N(d) and N–1(d) 
• Introduce an iterative test routine for functions and their inverses 

Module overview 
Many option valuation models rely on the ability to solve for the value of the cumulative normal distribution 
(CDF, denoted N(d)) when given the upper limit or percentage point (d). For example, the standard Black, 
Scholes, Merton option valuation model (BSMOVM) had two calculations usually denoted N(d1) and N(d2). 
Many risk management calculations rely on the ability to perform the inverse calculation, N–1(d1). That is, 
estimate the percentage point d, when given the prescribed CDF probability N(). 
Computing N(d) 
The solution to the CDF value, denoted N(), given a known value of the percentage point (d), can be 
expressed as 

 . (3.1) 

Often, option models such as the BSMOVM were labeled ‘closed form’ equations. “In mathematics, a 
closed-form expression is a mathematical expression that is formed with constants, variables and a finite 
number of standard operations and functions, such as +, -, ×, ÷, nth root, exponentiation, logarithm, 
trigonometric functions, and inverse hyperbolic functions. Usually, no limits or integrals are accepted.”2 It is 
generally assumed that the solution for the expression above for N(d) is ‘well-known.’ Thus, we need to 
know it. Unfortunately, an exact analytic expression to solve this open integral does not exist. With a 
computer, however, it can be easily solved. 
 Note that the range of the percentage point d is  and the range of the CDF probability is 

. The probability density function (PDF) is illustrated in Figure 3.2.1 and the cumulative 
distribution function (CDF) is illustrated in Figure 3.2.2. The purpose of the R code illustrated here is to 
estimate N(d), given d (using the method ND(d)) or to estimate d given N(d) (using the method D(n)). In the 
example below, d = –1.644853 and N(d) = 0.05. 
 
Figure 3.2.1. Probability Density Function of Standard Normal Distribution 

 
 

 
2Closed-form expression, www.wikipedia.com, July 5, 2023. 
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Figure 3.2.2. Cumulative Distribution Function of Standard Normal Distribution 

 
 
This CDF can be approximated by (d>0) 

 . (3.2) 

According to Stuart and Ord, this approximation is accurate to nine decimal places. The method, ND(d), is 
based on this approximation. See Alan Stuart and J. Keith Orr, Kendall's Advanced Theory of Statistics, 5th 
Edition, Volume 1 Distribution Theory, page 185. 
Computing N-1(d) 
Wichura (1988) provides a FORTRAN version of an approximation for the inverse normal CDF computation 
that he claims is accurate to the 16th decimal place. The method, D(n), is based on this approximation 
converted from FORTRAN. 
 Wichura (1988) breaks the CDF into two regions below N(d) < 0.5. Within these two regions, seven 
polynomials are estimated. The goal is to provide an accurate algorithm for estimating d, given N(d). The 
interface code discussed below provides a test of the accuracy of the D(n) and ND(d) programs. 
Estimation error illustrated 

Estimation error illustrated 
With the development of estimation methods for both N(d) as well as its inverse, we can examine estimation 
error. Figure 3.2.1 illustrates the estimation error produced by starting with a value of d, estimating the value 
of N(d), and then estimating based on this N(d) the value of d. 
 
Figure 3.2.1. Estimation error in D 
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Similarly, Figure 3.2.2 illustrates the estimation error produced by starting with a value of N(d), estimating 
the value of d, and then estimating based on this d the value of N(d). 
 
Figure 3.2.2. Estimation error in N 

 
In either case, the estimation error is essentially zero. 
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Module 3.3. Univariate Random Numbers 
Learning Objectives 

• Explain how to generate univariate random numbers, specifically uniform and normally distributed 
random variables 

• Develop the capacity to generate random numbers indicating likelihood 
• Illustrate how to generate random numbers for simulating rare events 

Module overview 
The ability to generate random numbers is very important in financial analysis. We use random number 
generating in several modules related to dynamic risk management. 
 Of course, generating random numbers with a deterministic computer poses some technical problems. 
Hence, the purist will refer to generating “pseudo” random numbers. For ease of exposition, the pseudo 
disclaimer is dropped. The main objective here is to introduce the ability to generate random numbers using 
R. Four different random number generating tasks are presented here, uniform integer, uniform real, 
likelihood, and normal. Each random number generator has to be initialized with a seed value—a task 
embedded in the R function. 
Computing Uniform Integer Random Numbers 
Whenever interacting with integers, it is important to remember the numerical limitations of integers. In R, 
the upper bound is 2,147,483,647 and lower bound is –2,147,483,647.3 
 The discrete uniform distribution has a finite set of possible outcomes and each outcome is equally likely. 
The parameters of the discrete uniform distribution in this application are the lower bound (L) and upper 
bound (U). Each integer within and including the bounds are assumed to be equally likely. The population 
mean is (L + U)/2 and the variance is [(U – L + 1)2 – 1]/12. 

Figure 3.3.1 illustrates a random sample based on a uniform distribution with limits of zero and one. 
 
Figure 3.3.1. Random sample illustrations of a uniform distribution with limits of zero and one 

   
 

Figure 3.3.2 illustrates a random sample based on a uniform integer distribution with limits of –100 and 
100. 
 

 
3These limits may change over time. 
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Figure 3.3.2. Random sample illustrations of a uniform integer distribution with limits of –100 and 100 

   
 
Computing Uniform Real Random Numbers 
The continuous uniform distribution has an infinite set of possible outcomes. The parameters of the 
continuous uniform distribution in this application are the lower bound (L) and upper bound (U). The 
population mean is (L + U)/2 and the variance is (U – L)2/12. 

Figure 3.3.3 illustrates a random sample based on a uniform real distribution with limits of –100 and 900. 
 
Figure 3.3.3. Random sample illustrations of a uniform real distribution with limits of –100 and 900 

   
 
Computing Normal Random Numbers 
The continuous normal distribution has an infinite set of possible outcomes. The parameters of the 
continuous normal distribution in this application are the population mean and the standard deviation. 

Figure 3.3.4 illustrates a random sample based on a normal distribution with mean zero and standard 
deviation one. 
 
Figure 3.3.4. Random sample illustrations of a normal distribution with mean 0 and standard deviation 1 
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Figure 3.3.5 illustrates a random sample based on a normal distribution with mean 10 and standard 
deviation 30. 
 
Figure 3.3.5. Random sample illustrations of a normal distribution with mean 10 and standard deviation 
30 

   
 
Computing Likelihood 
The method to generate likelihood values are based on a uniform distribution with zero lower bound and one 
upper bound. With each draw, the outcome is either zero or one depending on whether the uniform draw was 
below the desired likelihood (DL) value. The mean is just the desired likelihood, DL, and the variance is (DL 
– DL2). 

Figure 3.3.6 illustrates a random sample based on a Bernoulli distribution with the desired likelihood of 
25%. 
 
Figure 3.3.6. Random sample illustrations of a Bernoulli distribution with the desired likelihood of 25% 
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Module 3.4. The LSC Model: 
Curve Fitting Using Linear Regression 

Learning Objectives 
• Introduce the LSC model used widely throughout this material 
• Define and illustrate numerous properties of the LSC model 

Module Overview 
We motivate this module with three examples. Chuck was responsible for managing the risk of an interest 
rate swap book comprising over 60,000 different swaps tied to LIBOR. Even without knowledge of swaps, it 
is important to know this swap book had numerous future complex cash flows on almost every single day 
over the next 30 years. How should Chuck estimate the base discount rate to apply for every cash flow? 
Further, to manage the resultant risk, Chuck needs a parsimonious model (that is, one with only a few 
parameters to measure and manage). 
 Stephen, a quant in the Treasury Department of a national bank is responsible for $800 million U.S. 
Treasury portfolio with over 30 different bonds. How does Stephen measure and manage this risk? 
 Andy, a quant in the Risk Department of a major energy company, has identified over 30,000 separate 
risk factors from over five commodities, 120 different monthly maturities, and 50 different geographic 
locations. How does Andy reduce the dimensionality of this risk challenge? 
 Chuck, Stephen, and Andy all can apply a simple regression model to parsimoniously fit various data so 
as to reduce the dimensionality of the challenge and hence improve decision-making. A three factor LSC 
model will reduce both Chuck’s and Stephen’s problem to three variables to manage, based on either the 
swap curve or the U.S. Treasury curve. Although Andy’s problem is a bit more difficult, one could deploy 
the LSC model in various ways to reduce dimensionality to 20 to 30 major factors. 
 A brief review of ordinary least squares regression is provided in Appendix A to this module. We 
thoroughly introduce the powerful LSC model in this module. We will be illustrating the LSC model with 
extensive use of an R package that solves regressions of this nature. We now turn to the LSC model. 

LSC model motivated through term structure of interest rates 
Fitted term structure models can be viewed from two perspectives, calendar time and maturity time. The 
calendar time perspective is focused on the behavior of the term structure over time. For example, explaining 
the cross-sectional differences in bond returns is measured in calendar time, such as the past month.  
 The maturity time perspective is focused on the shape of the term structure at a particular point in 
calendar time. For example, explaining the shape of U. S. Treasury notes and bonds yields with different 
time to maturity. There are numerous other applications of the maturity time perspective, including the term 
structure of futures prices, the term structure of implied option volatility, and the term structure of dividends.  
 The calendar time perspective addresses the stochastic nature of the term structure of interest rates 
whereas the maturity time perspective is solely focused on the current observed relationship of observed 
yields and maturity. Although our focus is maturity time, we review the literature on both perspectives, as 
they are important for our purposes. Once the term structure can be reasonably estimated from a maturity 
time perspective, only then can the stochastic nature of the time series perspective be reasonably understood. 
Figure 3.4.1 illustrates these two perspectives with a five year bond. 
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Figure 3.4.1. Contrasting maturity time and calendar time 

 
 
Fitted calendar time term structure models 
Prior empirical studies of the term structure of interest rates have documented several well-known 
observations. Crack and Nawalkha (2000) summarize that “(u)p to 95 percent of the returns to U. S. Treasury 
security portfolios are explained by term-structure level shifts, slope shifts, and curvature shifts (Litterman 
and Scheinkman 1991; Jones 1991; Willner 1996; Jamshidian and Zhu 1997).” (p. 34) 
 Jamshidian and Zhu (1997) apply principal components analysis to the yield curve in three countries, 
Germany, Japan and the United States. They find that about 94 percent of the variation in “yield curve 
movements” is explained by only three components. Because this analysis was based on Riskmetrics, it is 
unclear how these results were influenced by various smoothing techniques. It is important to note that yield 
curve movements are not the same as bond returns, although they are related.  
 Litterman and Scheinkman (1991) examine weekly excess returns to U. S. Treasury bonds from February 
22, 1984 through August 17, 1988 and finds that a three factor model explains on average 97% of the cross-
sectional variation of excess bond returns. The factor model employed unobservable factors where “each 
factor has a mean of zero and a unit variance, and that the covariance between any two distinct factors is 
zero.” (p. 57) 
 Jones (1991) reports that of the variation in U. S. Treasury bond portfolio returns, “86.6% of the return 
has been attributable to parallel shifts in the yield curve, 9.8% to twists, and 3.6% to butterfly changes.” (p. 
43) Jones’ results are based on annual observations of six maturity ranges provided by the Merrill Lynch 
Treasury bond Indexes from 1979 through 1990. 
 Knez, Litterman and Scheinkman (1994) examine money market security (U. S. Treasury bills, 
commercial paper, certificates of deposit, Eurodollar certificates of deposit, and bankers’ acceptances) 
returns from January 1985 to August 1988 and “find that three factors explain, on average, 86 percent of the 
total variation in returns and four factors explain 90 percent.” (p. 1880) 
Fitted maturity time term structure models 
The goal of this strand of research is to represent the term structure by some mathematical function that has 
desirable properties. As quoted in Nelson and Siegel (1987), Milton Friedman recognized the benefits of a 
parsimonious term structure model when he states, “Students of statistical demand functions might find it 
more productive to examine how the whole term structure of yields can be described more compactly by a 
few parameters.”4 There is a large literature on fitting the term structure dating at least back to Durand (1942) 
and includes piecewise polynomial splines (McCulloch (1971, 1975)), various parametric models (Fisher 
(1966), Echols and Elliott (1976), Cooper (1977), Dobson (1978), and Chambers, Carleton and Waldman 
(1984)), and exponential splines (Vasicek and Fong (1982)). Several authors offer subjectively drawn curves, 
including Woods (1983), Malkiel (1966), and Durand (1942). Figure 3.4.2 highlights the behavior of U.S. 

 
4Quoted in Nelson and Siegel (1987), page 474. 



 
© 2023 Robert Brooks. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. 

12 

Treasury yields over time. It is clearly that these yields do not move parallel, rather at time the long end of 
the curve is more volatility and at other times the short end of the curve is more volatile. Further, the curve is 
not always upward or downward sloping. It takes on a wide array of shapes. 
 
Figure 3.4.2. Illustration of the U.S. Treasury yield curve over time5 

  
 
 Willner (1996) posits that the desirable properties of a curve fitting routine must address the bond 
“portfolio manager’s need for intuitive, descriptive, and comprehensive risk exposure information.” (p. 49, 
italics in original) Nelson and Siegel (1987) provide one such model and appeared to be motivated by the 
mathematical relationship between spot rates and forward rates. They put forward a parsimonious model that 
was “solved from differential equations describing rational interest rate behavior” (p. 50, Willner (1996)). 
Specifically, based on our notation 

 , (3.3) 

where yi denotes some input maturity time variables such as an interest rate for some maturity corresponding 
to i, xi,j denotes some input coefficients based on some maturity and some factor, and fj denotes the output 
factors. Nelson and Siegel’s original model assumed 

 , , and  (3.4) 

where s1 denotes a scalar that applies various weights to different locations on the term structure (termed the 
time constant by Nelson and Siegel (1987) and the hump position parameter by Willner (1996) and 
“determines the rate at which the regressor variable decay to zero”6), xi,1 and xi,2 denotes maturity 
coefficients, a parameter that depends solely on maturity time and the selected scalar, and fj denotes the 
model factor, an output parameter that is typically found using ordinary least squares regression applied to 
maturity time spot rates. 
 This model has several desirable properties when applied to the term structure of interest rates: 

• As maturity approaches infinity, the spot rate approaches f0, the level of the term structure 
• As maturity approaches zero, the spot rate approaches f0 + f1, where –f1 is the slope of the term 

structure 
• f2 measures the curvature that appears in the intermediate maturities 

 
5See https://support.stockcharts.com/doku.php?id=other-tools:yieldcurve. 
6See Nelson and Siegel (1987), page 478. 
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Barret, Gosnell and Heuson (1995) and Willner (1996) both report that fitted yield curve functions are not 
that sensitive to the choice of the scalar.7 
 Steeley (2008) used daily UK government bond coupon STRIPS from December 8, 1997 to May 15, 
2002 and thoroughly examines a variety of curve fitting methodologies. Spot yield curve fitting 
methodologies include cubic spline, polynomial, Vasicek as well as the LSC model below (referred by 
Steeley as the extended Svensson model). Based on a three factor model as used below, Steeley documents 
that the LSC model has the lowest “average (across the sample) mean (across the curve) absolute yield 
error”. (p. 1502) With six factors, Steeley reports that the cubic spline has the best fit, but the LSC model is a 
close second. 
 We now focus on the LSC model due to our interest in robust bond portfolio risk measures. 
LSC model 
An accurate methodology was developed by Svensson (1995) based on the work of Nelson and Siegel 
(1987). We call this approach the LSC model for level, slope, and curvature(s). We use a general form that 
can be expressed as 

 , (3.5) 

where yi denotes some input maturity time variables such as an interest rate for some maturity corresponding 
to i, xi,j denotes input LSC coefficients based on some maturity and some factor, and fj denotes the output 
factors. The LSC model in general form assumes 

 , , and . (3.6) 

Following the literature, we assume the input scalars, sj, are defined where s1 = s2. Again sj denotes scalars 
that applies various weights to different locations on the term structure, xi,j denotes LSC maturity 
coefficients, a parameter that depends solely on maturity time and selected scalars as illustrated in Equation 
(3.6), and fj denotes the output LSC factor, a parameter that is typically found using ordinary least squares 
regression applied to maturity time spot rates. (See Appendix A for mathematical details related to the LSC 
model.)  
 Again, note that as maturity goes to infinity, , then . Thus, f0 is interpreted as the output 

level parameter. As maturity goes to zero, , then . Thus, –f1 is interpreted as the output 
slope parameter. Note that if the interest rate term structure is upward sloping then f1 is negative. 
 To illustrate this empirical approach, consider the market information available on October 31, 2008. 
Figure 3.4.3 illustrates the nine CMT yields (6 month, 1, 2, 3, 5, 7, 10, 20, and 30 year) as well as 6 month 
spaced, linearly interpolated yields on a yearly basis between provided CMT yields. The goal is to provide a 
smooth set of observations from only nine CMT yields.  
 We first walk through a few LSC deployments that are not coded here. The goal is to understand more 
clearly the attributes of the LSC model. Thus, we first compute the linearly interpolated values and then fit 
the LSC model. 
 

 
7See Willner (1996), p. 51. 

yi = xi, j f j
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τ i
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Figure 3.4.3. Linear interpolation 

 
 
To achieve the maximum fit, we chose to use a nine-factor LSC model at this point. The eight scalars used 
are 0.5, 1.5, 2, 5, 7, 10, 15, and 20.8 Figure 3.4.4 illustrates this result. It is not surprising that this model fit 
the data very well. 
 
Figure 3.4.4. LSC model with nine factors 

 
 
 As an illustration of the LSC model and with this complete set of approximated CMT yields, we compute 
the implied discount factors as well as the implied, continuously compounded, spot rates. Figure 3.4.5 
illustrates these implied spot rates. With this complete set of spot rates, we are now ready to estimate the 
three-factor LSC model defined above. 
 

 
8The results are not sensitive to the choice of scalars, due to the large number of factors. 
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Figure 3.4.5. Implied spot rates inferred from LSC model with nine factors 

 
 
 The three-factor LSC model with a single scalar set to 3.0 is applied to the spot rates. Figure 3.4.6 
presents the original CMT data (all 11 observations, including both 1- and 3-month CMT). Note that the fit is 
far from precise. By design, a three-factor model will not fit a complex interest rate data perfectly. One 
potential objective is bond risk measurement; hence, it should be clear that the LSC model is capturing more 
than just parallel shifts in spot rates. 
 
Figure 3.4.6. Original CMT compared with fitted CMT 

 
 
 We now examine a similar problem based on interest rate swap data. The LSC model is illustrated below 
with interest rate swap data for January 29, 2009. Note that swap rates are not annualized, continuously 
compounded spot rates. The general curve fitting approach of the LSC model works well for most shapes of 
the term structure. Figure 3.4.7 illustrates the three factor LSC model alone with numerical values. 
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Figure 3.4.7. U. S. swap rates with fitted LSC model along with numerical values 

 
 
In the LSC-related data above, Maturity provides the , y denotes the observed swap rates, xi,0 (not shown) 
is the intercept terms, x1 (xi,1) denotes the first vector of input LSC coefficients, and x2 (xi,2) denotes the 
second vector of input LSC coefficients. The resulting LSC parameters are f0 = 3.50618% (Level), f1 = –
2.95534% (Slope), and f2 = –0.35538% (Curvature). Thus, the LSC curve fitting module is very flexible and 
can be solved using ordinary least squares regression.  
 One measure of how well the LSC model fit the data is r-square (denoted R2 or R^2) or correlation 
coefficient squared. Recall R2 measures the percentage of variability in the regression dependent variable 
(interest rates here) and the regression independent variables (functions of maturity and scalars) from the 
linear model. Figure 3.4.8 illustrates typical U.S. Treasury CMT data and an LSC three factor model with the 
scalar set to equal 2. Note the R2 is nearly equal to 1 (0.997) indicating a good fit. Thus, with only three 
factors, Level, Slope, and Curvature1, we can estimate the infinite number of potential rates from overnight 
to perpetual. 
 
Figure 3.4.8. U. S. swap rates with fitted LSC model in R 

 
 
 One weakness of the LSC model that is encountered is when the financial data lacks cross-sectional 
variability. Figure 3.4.9 illustrates U.S. Treasury CMT rates on January 1, 2019 when the CMT rates were all 
nearly the same. The R2 is only 0.792 yet the fit is very good for most applications in quantitative finance. 
 

τ i
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Figure 3.4.9. U. S. swap rates with fitted LSC model when data lacks variability 

 
 
Figure 3.4.10 illustrates fabricated data that oscillates up and down by 0.1 basis points. In this case, the R2 is 
nearly zero but yet again the fit is very close. Thus, visual inspection is important when applying the LSC 
model to actual financial data. 
 
Figure 3.4.10. Fabricated rates with fitted LSC model with minimal variability 

 
 
 The LSC model is flexible enough to have as many factors as an analyst wants. There are clearly 
tradeoffs. More factors will require more non-linear scalars. Our experience is that the more factors used, the 
more instability exhibited in the LSC model coefficients. Further, if you choose to solve for the scalars, the 
LSC model coefficients also exhibit more instability. Some analysts will first fit a nonlinear model to 
understand the implied scalars and then use the average of these scalars in their model. In most applications, 
the end results indicated in the study are not influenced by the choice of scalars but are often heavily 
influenced by the number of factors. A single factor model with just level is typically inadequate. Further, 
more than three factors (level, slope, and curvature1) is typically unnecessary and results in parameter 
instability over time. We explore these issues further. 
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LSC model independent variables and scalars 
When deploying the LSC model, used widely in this material, you will face many choices. First, you must 
decide how many factors to choose and what scalars to apply. Figure 3.4.11 illustrates up to five regression 
independent variables. The regression independent variables essentially apply different weighting to different 
maturities. Level applies constant weight. Slope applies more weight to the lower maturities. Curvature1 
applies the most weight to the near term but is humped. Note that the peak of Curvature1 is not 2. Curvature2 
and Curvature3 illustrate how the curvatures are influenced by the scalar choice. 
 
Figure 3.4.11. LSC model regression independent variables, xi,j 

  

  

 
 
 Figure 3.4.12 focuses on a three factor model but applying different scalars. Notice that scalar1 influences 
both slope and curvature1 regression independent variables. Many academic writers as well as practitioners 
have found setting scalar1 to 2.0 to be adequate and at times optimal. 
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Figure 3.4.12. Three factor LSC model regression independent variables, xi,j with different scalars 

  

  
 
 Figure 3.4.13 illustrates different slope coefficients within a three factor LSC model, where level is set to 
five percent and curvature1 is set to zero. Notice that a negative slope results in an upward sloping function 
and a positive slope results in a downward sloping function. Although arbitrary in how it is represented, this 
is the form that was originally taken when this model was being developed. 
 
Figure 3.4.13. Three factor LSC model with different slope coefficients 

 
 
 Figure 3.4.14 illustrates different curvature1 coefficients within a three factor LSC model, where level is 
set to five percent and slope is set to zero. Notice that a negative curvature1 results in an initially downward 
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sloping function that turns upward and a positive curvature1 results in an initially upward sloping function 
that turns downward. Again, remember that the LSC model is fit using linear regression, but the resulting 
functions are quite flexible in its non-linear shape. 
 
Figure 3.4.14. Three factor LSC model with different coefficient1 coefficients (Slope = 0) 

 
 
 Figure 3.4.15 illustrates different curvature1 coefficients within a three factor LSC model, where level is 
set to five percent and slope is set to –2 (upward sloping). Notice that a negative curvature1 results in a lower 
initial rate and is slower to converge to the level coefficient whereas a positive curvature1 results in a higher 
initial rate and is faster to converge to the level coefficient.  
 
Figure 3.4.15. Three factor LSC model with different coefficient1 coefficients (Slope = –2) 
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 The LSC model has been adopted in a wide array of practical finance applications, including fitting 
various term structures of interest rates, various term structures of volatilities, patters of first differences in 
maturity-varying futures contracts, as well as percentage changes in maturity-varying futures contracts. 
 
Appendix 3.4A. Ordinary least squares regression review 
A standard statistical problem is to find the best solution to a set of linear equations of the form 

 , (3.7) 

or in matrix notation 
 , (3.8) 

where 

 , , and . (3.9) 

The X matrix is known as the independent variables and the Y vector is known as the dependent variables. 
The b vector of unknown parameters can be found using ordinary least squares regression. 
We assume here that m > n and the set of linear equations is said to be over-determined. Thus, we seek the 
best fit by solving for the b vector.  
The normal equations can be written in matrix form as 

 , (3.10) 

and the OLS solution to this set of linear equations can be express as 

 , (3.11) 

where  denotes the normalized X matrix and  denotes the normalized Y matrix. 

 According to Press, et. al. (1992), the LU decomposition approach is very efficient for finding the 
solution to this set of linear equations. The idea is to decompose the NX matrix into lower and upper 
triangular matrices, where the lower triangular matrix has elements only on the diagonal and below and the 
upper triangular matrix has elements only on the diagonal and above. 
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 . (3.12) 

The basic idea is to solve sequentially for the unknown parameters. 

  (3.13) 

That is, we first solve for the vector Z such that 
 . (3.14) 

Because L is a lower triangular matrix, the solution is straightforward based on forward substitution. Based 
on this result, we can find 
 . (3.15) 

Because U is an upper triangular matrix, the solution is straightforward based on backward substitution. 
Thus, we solved for the unknown parameters without having to compute the matrix inverse or relying on 
numerous pivoting routines. Again, for more extensive discussion of this procedure, see Press, et. al. (1992). 
 
Appendix 3.4B. Details of the LSC Model 
The LSC model can be used to estimate a wide variety of interest rates related to the term structure. The goal 
of the estimation exercise is to approximate some rate across a wide array of maturities, typically with only a 
handful of observed market prices. The set of discount factors, , is defined based on either spot 

rates, , or instantaneous forward rates, , as 

  (3.16) 
or 

 . (3.17) 
Thus, the instantaneous forward rate can be expressed as 

 . (3.18) 

Substituting from Equation (3.16), 

 . (3.19) 

Hence, the instantaneous forward rate is the current spot rate plus any marginal change in the spot rate curve. 
The expanded version of Svensson (1995) and Nelson and Siegel (1987) can be expressed in the following 
theorem. 
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Theorem A1. If spot rates are expressed in terms of forward rates as 

 , (3.20) 

and estimated forward rates can be expressed as 

 . (3.21) 

then estimated spot rates are expressed as 

 . (3.22) 

 
Proof: The proof is based on elementary integration properties and follows directly from the following two 
lemmas. 
 
Lemma 1. Assuming c>0, then 

 . (3.23) 

Proof of Lemma 1: 

 . QED. (3.24) 

QED 
 
Lemma 2. Assuming c>0, then 
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Proof of Lemma 2: Let 
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Therefore, based on integration by parts 

  and  

 .  

Using Lemma 1 and rearranging. QED. 
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Module 3.5. Sorting Data 
Learning Objectives 

• Explain how to sort data very efficiently 
• Review the manner in which data files can be read (see R commentary) 
• Learn the variety of financial uses of sorting routines 

Module Overview 
The ability to sort data is very important for a wide array of financial tasks. We first briefly review some of 
the financial applications and then show some related output.  

Financial applications of sorting 
There are several financial tools that require numerical data to be sorted. For example, when computing 
value-at-risk using Monte Carlo simulation or historical simulation, the numerical data is sorted and then the 
value-at-risk measure is computed. 
 Investment managers often will produce histograms of a portfolio’s historical rates of return. To produce 
these histograms, the data must first be sorted. When exploring the use of leverage, a variety of portfolios are 
constructed, and various distributions can be examined. Each of these distributions would first be sorted. 
Several modules related to dynamic risk management will require data to be sorted. 

Sorting illustrations 
The R code illustrates managing data related to stock prices. Figure 3.5.1 illustrates the first differences 
distribution overlaid with an estimate of the normal distribution. 
 
Figure 3.5.1. Illustration of first differences distribution 

 
 
Figure 3.5.2 illustrates the percentage rates of return distribution overlaid with an estimate of the normal 
distribution. 
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Figure 3.5.2. Illustration of percentage rate of returns 

 
 
Figure 3.5.3 illustrates the several ways to represent financial data including prices, first differences, and 
percentage daily returns. Note that $0.01 trading is clear with first differences and the prevalence of holidays 
(too many zeros) is also apparent. 
 
Figure 3.5.3. Selected illustrations contrasting first differences and rates of return\ 
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 There is an enormous number of financial insights that are now within your grasp with the combined 
power of R coding and financial analysis. For example, the assumption that financial distributions are stable 
is clearly not true for first differences—grows over time with underlying stock price and financial crisis 
effects. Stability is also clearly not true for rates of return—declines over time and financial crisis effects. 
Finally, decimalization influences first differences and percentage returns differently. 
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Module 3.6. Embedded Parameters 
Learning Objectives 

• Explain how to solve for embedded parameters 
• Develop the capacity to solve for any embedded parameter 
• Learn how compute the implied yield to maturity for a simple, fixed rate bond 

Module Overview 
The ability to solve embedded parameters is introduced here illustrated with the problem of solving for the 
appropriate yield to maturity given the current market price of a bond. 
Bond pricing and yield to maturity 
The simplest way to express the current value of a bond (V) given a fixed dollar coupon (C) with a given face 
value (Par) and a stated time to maturity expressed in years (tN) as well as assumed yield to maturity (y) is  

 . (3.25) 

 Our focus here is on solving for the yield to maturity, an embedded parameter. This task is accomplished 
by expressing a function of yield to maturity such that when the correct embedded parameter is used, then 
this function returns zero. We define the current market price of the bond as P. That is, 

  (3.26) 

 The goal of programs like the one presented here is to solve one-dimensional problems like this one 
numerically. The yield to maturity that makes f(y) = 0 is known as the root of this function. 
 Recall as yield goes up, bond price goes down; as yield goes down, bond price goes up. The price-yield 
curve can be described as convex. It means that the curve bows away from the origin of the graph as 
illustrated in Figure 3.6.1. (Bowed toward the origin would be called concave.) The idea is when we are 
given a bond price, we can compute the implied yield to maturity. That is, what yield to maturity will return a 
bond price equal (within some allowable error) to the observed market price of the bond. 
 
Figure 3.6.1. Relationship between bond prices and yield to maturity 
 
       Price 
 
 
 
 
 
 
 
 
 
 
 
                Yield to Maturity 
 
Numerical methods 
There are no known methods to derive an exact equation for the yield to maturity problem above as well as 
numerous other embedded functions in finance, such as option model implied volatility. Almost all functions 
in finance are continuous, thus making root finding easier. There are innumerable methods, however, to solve 
for embedded parameters. Methods include bisection, false position, secant, Ridders, Brent, and Newton-
Rhapson. Source code in C++ is available for each of these methods in Numerical Recipes in C++. Source 
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code in R is widely available in different packages. We are using the optimize function within the stats 
package. 
 Because the Brent method is built on concepts from other methods, we briefly introduce some root 
finding concepts and methods. The optimization routine used in the R stats package is a “slight variation” of 
the Brent method. 
 First, at least one solution to an embedded parameter problem is said to be bracketed if in the interval 
(a,b), the function f(a) and f(b) return opposite signs. Remember that the function is configured such that f(x) 
= 0 when x is the correct solution to the implied parameter problem. Simply move through the range (a,b) at 
sufficiently “small” increments. You have an approximation to the solution when the sign changes. 
 Second, the method of bisection is very simple and is fail proof. The idea is to take the extremes of the 
bracket, find the midpoint, and then determine where the opposite signs still occur. That is, consider f(a) and 
f(m) compared to f(m) and f(b), where m = (a + b)/2. Repeat this process, until the difference between the 
brackets is within the allowable error amount. 
 Third, the secant method assumes that the slope of the function is approximately linear and, based on this 
slope information, often converges faster than the method of bisection. The secant method requires an initial 
guess. 
 Fourth, Newton-Rhapson is the best choice when the first derivative of the given function is known. 
Rather than numerically computing the slope of the line, the information contained in the first derivatives is 
used. We have found, however, that Brent is extremely reliable and very fast. Therefore, we use it even when 
computing the first derivative is possible. 
 Fifth, the concept of inverse quadratic interpolation is exploited in the Brent method. Inverse quadratic 
interpolation relies on three points to fit an approximation function. Thus, it is not linear. This approach 
assumes the implied parameter (x) is roughly a quadratic function of the known parameter (y). Therefore, the 
inverse quadratic interpolation is more efficient than simple linear interpolation. 
 According to Press, et. al. (1992), “Brent’s method combines root bracketing, bisection, and inverse 
quadratic interpolation to converge from the neighborhood of a zero crossing. ... Brent’s method combines 
the sureness of bisection with the speed of a higher-order method when appropriate. We recommend it as the 
method of choice for general one-dimensional root finding where a function’s values only (and not its 
derivative or functional form) are available.” (p. 360-361) 
 The Brent method requires the user to bracket the root(s) prior to starting the analysis. Thus, we select a 
very high and a very low yield to maturity to assure that f(y=500%) < 0 and f(y=0.001%) > 0. The 
programmer rather than the end user determines these bounds in our case. Another decision made by the 
programmer that must be made is the numerical accuracy where the search will cease. We code an epsilon of 
0.000001, thus if the absolute value of f(y) is less than 0.000001, then the Brent method will stop searching. 
Brent is a combination of the best aspects of bisection, secant, and inverse quadratic interpolation. 

Although not directly related to embedded functions, Figure 3.6.2 illustrates the relationship between 
bond prices and yield to maturity for different maturities. 
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Figure 3.6.2. Relationship between bond prices and yield to maturity for different maturities 

 
 

Figure 3.6.3 illustrates the relationship between yield to maturity estimation error and yield to maturity 
for different maturities. Clearly, there is minimal estimation error. 
 
Figure 3.6.3. Relationship between yield to maturity estimation error and yield to maturity for different 
maturities 
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Module 3.7: Numerical Integration and the Lognormal Distribution 
Learning objectives 

• Explore the use of numerical integration in finance 
• Compute the probability of an option being in-the-money based on the lognormal distribution 
• Contrast the normal and lognormal distribution 
• Understand when assuming the lognormal distribution is inappropriate 

Module overview 
This module illustrates how to estimate via integration the probability of a call and put option being in-the-
money assuming the underlying instrument’s terminal value is lognormally distributed. We also provide 
several summary statistics for both the lognormal and normal distribution. The parameters of this distribution 
are based on option-related information, and we assume the underlying instrument is expected to grow at the 
dividend-adjusted risk-free interest rate.9  
 We review the basic properties of the lognormal distribution with a focus on the behavior of the 
lognormal distribution with very high dispersion. It is common for option prices to imply unreasonable 
volatilities when we assume a lognormal distribution. One objective here is to identify when the lognormal 
distribution will likely need to be replaced with an alternative probability distribution. 
 The lognormal distribution holds a central role in finance. For example, the underlying instrument of 
financial derivatives is often assumed to follow a lognormal distribution. This distribution is attractive 
because the underlying instrument cannot be negative due to limited liability and the lognormal distribution 
limits are zero (not inclusive) and positive infinity (not inclusive). 
 The following sections explore in detail the properties of the lognormal distribution. Because the 
lognormal distribution is widely used in finance it is vital to understand its properties. Some of the normal 
distribution properties are also provided for comparison. 

Univariate Normal and Lognormal Distribution 
The cumulative distribution function (CDF) of a variable X is defined as  
 . (3.27) 
With continuous variables, such as the normal and lognormal distributions, the CDF is related to the 
probability density function (PDF) as 

 , (3.28) 

where  denotes the corresponding PDF.  
 The lognormal distribution is directly related to the normal distribution. The lognormal distribution has 
two parameters, the mean, , and the standard deviation, . At this point, we are using the symbols for 
mean and standard deviation generically. Later, we will use these same symbols for very specific finance 
applications. 
 The mean must be finite, , and the standard deviation must be positive,  > 0. The range of 
the lognormal distribution is the positive real number line or .10 For many finance applications, x 
would be related to the underlying instrument, such as a particular stock price. Interestingly, the lognormal 
distribution does not admit the possibility of x = 0. Thus, one weakness of the lognormal distribution being 
used to model a stock price is that the company can never go bankrupt in such a way that the existing stock 
price is worthless. The financial marketplace is littered with a vast number of worthless common stock. 
Recall that no mathematical model of reality is correct, but many models are useful. The skilled financial 
analyst knows the model’s limitations. The purpose of analytical tools, such as the lognormal distribution, is 

 
9This assumption is not required it just makes the transition to the Black, Scholes, Merton option valuation model easier. 
10It is unclear whether the range of the lognormal is actually . That is, is positive infinity included or not? I 
believe not. 
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to roughly approximate reality. The quantitative professional is always keen to know when these tools will 
fail to be useful. 
 If  is distributed normal, then x is said to have a lognormal distribution. Given this functional 
relationship, we see that the two distributions are based on the same two underlying parameters. The CDFs 
are defined as (  is the Greek upper case lambda) 

  (Lognormal CDF) and (3.29) 

  (Normal CDF). (3.30) 

The PDFs therefore are ( is the Greek lower case lambda) 

  (Lognormal PDF) and (3.31) 

  (Normal PDF). (3.32) 

Thus, we distinguish between the PDFs and CDFs with lower and upper case and between the lognormal and 
normal with lambda ( ) and n. 

From its definition, the median is  

 . (3.33) 

The medians are  
  and (3.34) 
 . (3.35) 
Notice that the lognormal distribution median is invariant to the standard deviation of the normal 
distribution. 
 The mode satisfies the following two properties,  and . For the lognormal and normal 
distributions, the modes are  
  and (3.36) 
 . (3.37) 
The lognormal distribution mode is an exponentially decreasing function of the normal distribution variance. 
This is an important property of the lognormal distribution as it applies to financial applications. As the 
variance of the normal distribution increases, the peak (mode) of the lognormal distribution is decreasing. 

The first four moments of the lognormal and normal distribution are as follows. 
First moment about zero (mean) is 

  and (3.38) 
 . (3.39) 
The mean of the lognormal distribution is an exponentially increasing function of the normal distribution 
variance. Recall the lognormal distribution can be viewed as an exponential transformation of a normally 
distributed variable, say x. Thus, x is symmetric and ex is asymmetric with positive skewness because higher 
values of x imply values of ex are further from the mean than x. Thus, the lognormal mean is higher for 
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higher normal distribution variance. Therefore, as the normal variance increases, the normal distribution 
mean has to decline if the goal is to maintain the same lognormal mean. 
 The next three moments are presented about the mean (and not zero). Second moment about the mean or 
variance can be expressed as:  
  and (3.40) 

 . (3.41) 
The variance is an exponentially increasing function of the normal distribution variance. By definition, the 
standard deviation of the normal distribution is . Third moment about the mean can be expressed as 

  and (3.42) 

 . (3.43) 
The third moment is an exponentially increasing function of the normal distribution variance. The third moment 
of the normal distribution is zero. Fourth moment about the mean is 

  and (3.44) 

 . (3.45) 
The fourth moment is an exponentially increasing function of the normal distribution variance. The fourth 
moment about the mean of the normal distribution is directly related to the normal distribution variance.  
 A unitless measure of skewness (the third standardized or normalized moment) is expressed as 

  and (3.46) 

 . (3.47) 

Note that the normalized lognormal skewness is widely reported incorrectly.11 To be thorough, substituting 
from Equations (3.40) and (3.41), we have 

 . (3.48) 

The normalized lognormal skewness is an exponentially increasing function of the normal distribution 
variance. Symmetrical distributions, such as the normal distribution, will have . If , then we 
have the following relationship: mean > median > mode. If , then we have the opposite relationship: 
mean < median < mode. There are, however, some exceptions. See Stuart and Ord (1987), p. 107. 
 The measure of excess kurtosis (fourth standardized moment minus 3) is 

  and (3.49) 

 . (3.50) 

 
11See, for example, Wikipedia. Hopefully, it is corrected by the time you view the lognormal distribution Wikipedia 
page.  
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 This measure is termed “excess” because we subtract 3, the value of kurtosis for the normal distribution. 
The excess kurtosis is an exponentially increasing function of the normal distribution variance. Note that 

 is called mesokurtic. The normal distribution and binomial distributions are mesokurtic. When 
, the distribution is called leptokurtic having excess positive kurtosis. Leptokurtic distributions have 

fatter tails. The lognormal distribution is leptokurtic as well as the Laplace distribution and the logistic 
distribution. When , the distribution is called platykurtic having negative excess kurtosis. Platykurtic 
distributions have thinner tails. The uniform distribution and Bernoulli distribution (p=1/2) are platykurtic. 
 Finally, differential entropy or continuous entropy is introduced. Differential entropy developed out of 
information theory and is supposed to measure the “… average surprisal of a random variable …,” where 
surprisal denotes the surprise of seeing a particular outcome. (For more on differential entropy, see the 
information theory literature starting with Wikipedia.) 

 Entropy of the lognormal distribution: . (3.51) 

 Entropy of the normal distribution: . (3.52) 

For clarity, consider the following example related to some asset price distribution. 
Asset price distribution example 
Recall if  (normal distribution, subscript g denote the generic mean and standard deviation – 

not finance specific) and , then  (lognormal distribution). In the context of rates of 

return (R), suppose . In the material to follow, the mean and standard deviation notation uses 
the traditional finance form. 
 If a stock’s continuously compounded rate of return is distributed normal , 

then the terminal stock price is distributed lognormal . Thus, the terminal 

stock price can be expressed as  and the variance of the terminal stock price can be 

expressed as . Alternatively, the normal distribution parameters can 

be expressed as a function of the lognormal distribution parameters,  and 

. 

 We now consider the application to stock returns. Suppose a stock is trading for $100 and we have a one 
year horizon. If we say the annualized, continuously compounded expected rate of return on a stock is 

 percent, what do we mean? Typically, we intend for the following equality to hold,  

 . 
Note the two different expressions for the terminal expected value of the stock are 
  and (3.53) 

 . (3.54) 
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These two expressions are a source of much confusion. These two expressions are easily reconciled by 
setting 

 . (3.55) 

 For example, suppose we have S0 = $100, T – t = 1 year,  = 12%, and s = 30%. Therefore, 

  
and 

 . 

Based on the notation above, we have 

 . 

In this example, we can also compute several other statistics for this lognormal distribution:12 

 , 

 , and 

 . 

and thus the standard deviation is 34.600430. 
 We illustrate the remaining statistics graphically in the next section. 
Asset price distributions with various standard deviations 
On the following pages, we have the probability density functions and the cumulative distribution functions 
with standard deviations of increasing magnitudes. Several important observations can be made from the 
following exhibits. 

• With increasing volatility, we have an increasing mean, the median remains unchanged, and the 
mode declines. 

• With increasing volatility, the skewness increases. 
• With increasing volatility, the likelihood of observing a very low value increases at an increasing 

rate.  
 

 
12Note that these statistics are reported without rounding error. If you verify these results, which we recommend as a 
learning exercise, you will have results slightly different. 
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Figure 3.7.1A. Stock Price = $100, Horizon = 1 year Expected Return = 12%, Standard Deviation = 30% 

 
Figure 3.7.1B. Stock Price = $100, Horizon = 1 year Expected Return = 12%, Standard Deviation = 30% 
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Figure 3.7.2A. Stock Price = $100, Horizon = 1 year Expected Return = 12%, Standard Deviation = 80% 

 
Figure 3.7.2B. Stock Price = $100, Horizon = 1 year Expected Return = 12%, Standard Deviation = 80% 
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Figure 3.7.3A. Stock Price = $100, Horizon = 1 year Expected Return = 12%, Standard Deviation = 130% 

 
Figure 3.7.3B. Stock Price = $100, Horizon = 1 year Expected Return = 12%, Standard Deviation = 130% 
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Figure 3.7.4A. Stock Price = $100, Horizon = 1 year Expected Return = 12%, Standard Deviation = 180% 

 
Figure 3.7.4B. Stock Price = $100, Horizon = 1 year Expected Return = 12%, Standard Deviation = 180% 

 
 
 We now illustrate one application of this analysis in the probability of a call option being in-the-money. 
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Probability call option in-the-money 
Consider an underlying instrument that is lognormally distributed with a normally distributed mean µ and 
standard deviation s. The value of the underlying instrument at some future point in time, say T, can be 
modeled as  

 , (3.56) 
Where we assume  is distributed normal with mean zero and standard deviation one. One can easily 
demonstrate that the mean and standard deviation of  is consistent with the lognormal distribution.  
 The probability of a call option being in-the-money can be expressed as 

 . 

Rearranging, we note 

 , 

where 

  and  

 . 

 We will return to this type of notation in Modules 5.4 and many others. 

Multivariate Normal and Lognormal Distribution 
Quantitative finance suffers from what is known as the “curse of dimensionality.” In physics, often problems 
are couched in terms of three or four dimensions when modeling space and time. At times, perhaps based on 
string theory, physicist may model up to 11 or 12 dimensions. In finance, one easily struggles with hundreds 
of dimensions. For example, the S&P 500 index is technically a 500 dimensional problem. Further, if you 
consider each stock as having multiple factors or dimensions, one could easily get to thousands of 
dimensions. Thus, one quest is to aggressively seek to reduce dimensionality. In practice, one rarely gets the 
dimensions down to only one. Hence, we need the capacity to model multiple dimensional problems. 
 The probability density function of a multivariate normal distribution, denoted as , can be 
expressed with matrix notation as 

 , (3.57) 
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  denotes the mean of the distribution, again size N, 
  denotes the covariance of the distribution, matrix size NxN, assumed to be symmetric and positive 
definite, 
  denotes the determinant, and 

  denotes the transpose. 

 The multivariate lognormal distribution cannot be written as concisely. If, however,  is a 

multivariate normal distribution and we define , then y is said to follow a multivariate lognormal 
distribution, where for each element the mean and covariance can be expressed as 

  and  (3.58) 

 . (3.59) 
For many applications, a bivariate distribution is adequate. The bivariate PDF and CDF for the normal 
distribution can be expressed as 

 . (3.60) 

 . (3.61) 

The bivariate PDF and CDF for the lognormal distribution can be expressed as 

 . (3.62) 

 . (3.63) 

 The relationship between stock price i, Si,t, and the continuously compounded return, Ri,t, from time t – 1 
to time t is . Note that if Ri,t is normally distributed, then we know St is lognormally distributed. 
The value of a portfolio of stocks in this case is the sum of lognormally distributed random variables. 
Unfortunately, the sum of lognormally distributed variables does not follow any known distribution. The sum 
of normally distributed random variables, however, is well-known to be normally distributed. Therefore, it is 
easier to assume the underlying stock prices are normally distributed. 
 Figure 3.7.5 illustrates a simulation of 1,000 draws from a bivariate lognormal distribution, with normal 
mean 0, variance 1, and correlation 0. Note that the bivariate lognormal lower bound is zero for both x and y. 
Zero is not feasible. Therefore, one advantage of the lognormal distribution is that negative values are not 
possible. Closely related, one disadvantage of the lognormal distribution is that zero values are also not 
possible. 
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Figure 3.7.5 Bivariate Lognormal Simulation 

 
 

Conditional Normal and Lognormal Distribution 
Consider two variables with correlated normal distributions, xj for j = 1, 2. Thus, –∞ < xj < +∞ for j = 1, 2. 
We denote the distribution of these normal variables as 
 . (3.64) 
Recall the univariate normal density function can be expressed as 

 . (3.65) 

The correlation coefficient between x1 and x2 is expressed as r12 or just r. Thus, x1 and x2 are normal variates 
with a bivariate normal joint distribution. 
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 . (3.69) 

The bivariate normal density function can be expressed as 

 . (3.70) 

The conditional normal density function is 

 . (3.71) 

Proof:  From the definition of conditional density function 

 . (3.72) 

Rearranging 

 . (3.73) 

Further rearranging, 

 . (3.74) 

Finally, we have 

 . (3.75) 

Substituting and rearranging, 

 . (3.76) 

Therefore, 
 , (3.77) 
where 

n x j( )dx j
−∞

d

∫ = e
−
x j−µ j( )2
2σ j

2

σ j 2π
dx j

−∞

d

∫ = e
−
z j
2

2

σ j 2π
σ j dz j

−∞

d−µ j
σ j

∫ = e
−
z j
2

2

2π
dz j

−∞

d−µ j
σ j

∫ = n z j( )dz j
−∞

d−µ j
σ j

∫

n2 x1,x2( ) = e
−
z1
2−2ρz1z2+z2

2

2 1−ρ2( )

2πσ 1σ 2 1− ρ2

n x2 | x1( ) = e
−
z2−ρz1( )2
2 1−ρ2( )

σ 2 2π 1− ρ2( )

n x2 | x1( ) = n2 x1,x2( )
n x1( ) =

e
−
z1
2−2ρz1z2+z2

2

2 1−ρ2( )

2πσ 1σ 2 1− ρ2

e
−
z1
2

2

σ 1 2π

n x2 | x1( ) = e
−
z1
2−2ρz1z2+z2

2

2 1−ρ2( )

σ 2 2π 1− ρ2( ) exp −
z1
2

2
⎛

⎝⎜
⎞

⎠⎟

= e
−
z1
2−2ρz1z2+z2

2

2 1−ρ2( ) +
z1
2

2

σ 2 2π 1− ρ2( )

n x2 | x1( ) = e
−
z1
2−2ρz1z2+z2

2−z1
2 1−ρ2( )

2 1−ρ2( )

σ 2 2π 1− ρ2( )
= e

−
z1
2ρ2−2ρz1z2+z2

2

2 1−ρ2( )

σ 2 2π 1− ρ2( )

n x2 | x1( ) = e
−
z2−z1ρ( )2
2 1−ρ2( )

σ 2 2π 1− ρ2( )

n x2 | x1( ) = e
−
x2− µ2+ρ

σ 2
σ1

x1−µ1( )⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

2

2σ 2
2 1−ρ2( )

σ 2 2π 1− ρ2( )

n x2 | x1( ) ~ N µ2|1,σ 2|1
2( )



 
© 2023 Robert Brooks. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. 

43 

  and (3.78) 

 . (3.79) 
Thus, we have numerous ways to find quantitative solutions with integration. 
 We conclude this module by illustrating several aspects of the normal and lognormal distributions. 
Figure 3.7.6 illustrate the normal distribution PDF with increasing volatility. 
 
Figure 3.7.6 Univariate Normal PDFs (30%, 80%, 130%, 180%) 

   

   
 
Figure 3.7.7 illustrates the lognormal distribution PDF with increasing volatility. The volatility is calibrated 
to be roughly equivalent to the previous figure. 
 
Figure 3.7.7 Univariate Lognormal PDFs ($34, $106.75, $237, $558) 
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We clearly see the existence of negative stock prices with the normal distribution and non-zero stock prices 
with the lognormal distribution. Figure 3.7.8 illustrate the normal distribution CDF with increasing volatility. 
 
Figure 3.7.8 Univariate Normal CDFs (30%, 80%, 130%, 180%) 

   

   
 
Figure 3.7.9 illustrates the lognormal distribution CDF with increasing volatility. 
 
Figure 3.7.9 Univariate Lognormal CDFs ($34, $106.75, $237, $558) 
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Several other interesting plots are produced in this code shown in Figure 3.7.10. 
 
Figure 3.7.10 Univariate Lognormal PDFs ($34, $106.75, $237, $558) 

   

   

 
 
Summary 
In chapter 3, we reviewed several important tools for performing quantitative finance tasks. In the remainder 
of this book, these tools are deployed to specific tasks. 
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