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Chapter 3. Quantitative Finance Tools 
R Commentary 

Introduction 
In this chapter, we present a series of useful R modules that cover fundamental tools used often in 
quantitative finance applications. 
 Each of these R programs is presented as a separate module contained in a subdirectory. The goal is to 
review essential coding techniques that will prove useful in building quantitative finance. We recommend 
that you work through each module with an effort to understand both the financial concepts as well as 
illustrations of R coding. 
 First, we address some R code that will show up in almost all our sample code. 

Basic housekeeping 
At the top of each file, we will provide the file name as illustrated below. Most of the files that run modules 
will end with Test.R indicating that it is simply a test file that you are free to subsequently modify. 
# File Name Test.R 

 The next several lines are designed to clean up prior runs of the program. These lines are helpful when 
debugging as residual errors may often remain even when you have fixed the code. Alternatively, it may 
appear the code is running correctly but only because variables that have now been removed are still in the 
environment. The next time you clean out the environment, the program would crash. 
rm(list = ls())  # Take out the Environment "trash" 
cat("\014") # Clear Console, making error checking easier. 
while (!is.null(dev.list()))  dev.off() # Clear old plots 
 It is helpful to format the font of graphs to be consistent with other documents you are producing that may 
be independent of R. 
par(family = 'Times New Roman') # Globally set fonts for graphs 

 The R programming language is powerful in its ability to access multiple packages and even design 
packages of your own. Most quantitative finance packages will use several available packages. The syntax 
below automatically installs packages even if they have not already been installed as well as make them 
accessible to this program. In this illustration, we assume there is a need for three packages, date, optimx, 
and openxlsx. At this point, all you need to know is that we need access to these packages, not what they 
provide. As you can see, it is helpful to leave comments reminding you and others why the packages are 
being installed. 
# Libraries 
#  date - functions for handling dates 
#  optimx - general purpose optimization 
#  openxlsx - manipulate spreadsheet files 
Packages <- c("date", "optimx", "openxlsx")  
if(length(setdiff(Packages, rownames(installed.packages()))) > 0) { 
  install.packages(setdiff(Packages, rownames(installed.packages()))) 
} # Make sure libraries are installed on this computer 
lapply(Packages, library, character.only=TRUE) # Load and attach libraries 
rm(Packages) 
 It is important to note that because R is open source some packages may be inappropriate for your 
objectives. Also, when upgrading to a new version of R, certain older packages may not function correctly. If 
you maintain software over any length of time, you quickly realize that computer programming languages 
and the operating systems in which they reside are in constant flux. 
 

Module 3.1: Managing the Calendar 
See Calendar and Compounding Test.R. There is also a supplemental file exploring ancient day counting as 
well as a few other items in Ancient Calendar Test.R and an exploration of day counting with functions from 
the package jrvFinance is provided in Calendar Test.R. Although not discussed here, see Ancient Calendar 
Test.R for dealing with ancient historical dates. 
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Calendar and Compounding Test.R (Selected Excerpts and Outputs) 
The date package contains several useful functions. The function mdy.date() converts calendar integers into 
a Julian number: 
JulianStartDate = mdy.date(InputStartMonth,InputStartDay,InputStartYear,nineteen = FALSE) 
> JulianStartDate 
[1] 1Jan2020 # Printed as a date 
> as.integer(JulianStartDate) 
[1] 21915 # Stored as an integer 
> class(JulianStartDate) 
[1] "date" 

The function date.mdy() converts a Julian number into a vector containing the calendar date: 
StartDate = date.mdy(JulianStartDate) 
> StartDate 
$month 
[1] 1 
 
$day 
[1] 1 
 
$year 
[1] 2020 
The function paste() is useful for producing appropriately formatted data: 
TVACT360 = paste("$",format(TVACT360, big.mark=","),sep="") 
… 
TVACT360; TVACT365; TVDifference 
## [1] "$4,414,890" 
## [1] "$4,325,988" 
## [1] "$88,901.4" 

 
Calendar Test.R (Selected Excerpts and Outputs) 
This program illustrates some of the functionality of the jrvFinance package. The following snippet 
illustrates different issues related to day counting. 
# Computing fraction of year 
InputStartMonth <- 6 
InputStartDay <- 1 
InputStartYear <- 2020 
JulianStartDate = mdy.date(InputStartMonth,InputStartDay,InputStartYear,nineteen = FALSE) 
InputEndMonth <- 6 
InputEndDay <- 1 
InputEndYear <- 2021 
JulianEndDate = mdy.date(InputEndMonth, InputEndDay, InputEndYear, nineteen = FALSE) 
d1 <- JulianStartDate 
d2 <- JulianEndDate 
r1 <- mdy.date(1, 1, InputStartYear, nineteen = FALSE) # Beginning of year, not June 
r2 <- mdy.date(1, 1, InputEndYear, nineteen = FALSE) 
# 2020 is a leap year, see jrvFinance package help 
F1 <- yearFraction(d1, d2, r1, r2, freq = 2, convention = "30/360") # 360/360 
F2 <- yearFraction(d1, d2, r1, r2, freq = 1, convention = "ACT/ACT") # 366/365 
F3 <- yearFraction(d1, d2, r1, r2, freq = 2, convention = "ACT/360") # 366/360 
F4 <- yearFraction(d1, d2, r1, r2, freq = 2, convention = "30/360E") # 360/360 (semi ?) 
F5 <- yearFraction(d1, d2, r1, r2, freq = 12, convention = "ACT/ACT") # Monthly 
F6 <- daycount.actual(d1, d2, variant = "bond") 
F7 <- daycount.30.360(d1, d2, variant = "US") 
F1; F2; F3; F4; F5; F6; F7 
 
> F1; F2; F3; F4; F5; F6; F7 
[1] 1 
[1] 0.9972678 
[1] 1.013889 
[1] 1 
[1] 0.08310565 
[1] 365 
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[1] 360 
Often you need the current date on the computer system. 
# Find today on the system 
?'Sys.Date' 
TodaysDate = Sys.Date() # But in unusable format 
TodaysYear <- as.integer(format(TodaysDate, "%Y")) # year -- upper case 
TodaysMonth <- as.integer(format(TodaysDate, "%m")) # month -- note case sensitive 
TodaysDay <- as.integer(format(TodaysDate, "%d")) # day -- note case sensitive 
JulianTodaysDate = mdy.date(TodaysMonth, TodaysDay, TodaysYear, nineteen = FALSE) 
TodaysDate; TodaysYear; TodaysMonth; TodaysDay 
 
[1] "2019-09-26" 
[1] 2019 
[1] 9 
[1] 26 
# Holidays: tis: Time Indexes and Time Indexed Series 
if("tis" %in% rownames(installed.packages())==FALSE)install.packages("tis") 
library(tis) 
x <- 20190101 
x <- mdy.date(1, 1, 2019, nineteen = FALSE) 

One challenging problem is determining whether a particular date is a business holiday or finding particular 
dates for holidays. 
> x <- mdy.date(1, 1, 2021, nineteen = FALSE) 
> # See package tis: Time Indexes and Time Indexed Series 
> board <- FALSE # Presidential inauguration is not a holiday 
> nextBusinessDay(x, holidays = NULL, goodFriday = F, board = F, inaug = board) 
[1] 20210104 
class: ti 
> previousBusinessDay(x, holidays = NULL, goodFriday = F, board = F, inaug = board) 
[1] 20201231 
class: ti 
> isHoliday(x, goodFriday = TRUE, board = FALSE, inaug = board, businessOnly = TRUE) 
[1] TRUE 
> isBusinessDay(x) 
[1] FALSE 
> isGoodFriday(x) 
[1] FALSE 
> isEaster(x) 
[1] FALSE 
> years <- 2021 
> holidays(years, goodFriday = F, board = F, inaug = board, businessOnly = T) 
    NewYears       MLKing   GWBirthday     Memorial Independence        Labor  
    20210101     20210118     20210215     20210531     20210705     20210906  
    Columbus     Veterans Thanksgiving  
    20211011     20211111     20211125  
> federalHolidays(years, board = F, businessOnly = T) 
    NewYears       MLKing   GWBirthday     Memorial Independence        Labor  
    20210101     20210118     20210215     20210531     20210705     20210906  
    Columbus     Veterans Thanksgiving  
    20211011     20211111     20211125  
> goodFriday(years) 
GoodFriday  
  20210402  
> easter(years) 
[1] 20210404 
> inaugurationDay(years) 
Inauguration  
    20210120 
The last bit of code illustrates how to build your own function. Although not robust, you should get the 
general idea of how to build a function is a separate file—see Adjust Date.R. 
> source('Adjust Date.R') 
> TestMonth <- 9 
> TestDay <- 26 # Normal Tuesday 
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> TestYear <- 2019 
> Convention <- "MBP" # Modified Business Following or MBP (Preceeding) 
> AdjustDate(TestMonth, TestDay, TestYear, Convention) 
[1] 26Sep2019 
> TestDay <- 29 # Sunday 
> AdjustDate(TestMonth, TestDay, TestYear, Convention) 
[1] 27Sep2019 
> Convention <- "MBF" 
> AdjustDate(TestMonth, TestDay, TestYear, Convention) 
[1] 30Sep2019 

You now have a good introduction to the challenges of managing dates. 
 
Module 3.2. Cumulative Normal Distribution Function and its Inverse 
See program CDF and Inverse CDF Test.R.  
 
3.2 CDF and Inverse CDF Test.R (Selected Excerpts and Output) 
The function rnorm() generates a vector of normally distributed random numbers: 
SampleDraw = rnorm(NumberOfObservations, EstimatedMean, EstimatedStandardDeviation) 
 

The functions dnorm(), pnorm(), and qnorm() are all based on the normal distribution: 
# Probability density function 
PDF = dnorm(QuantileValue, EstimatedMean, EstimatedStandardDeviation, log = FALSE)  
# Cumulative distribution function 
CDF = pnorm(QuantileValue, EstimatedMean, EstimatedStandardDeviation,  
  lower.tail = TRUE, log.p = FALSE)  
# Quantile function 
QF = qnorm(CDF, EstimatedMean, EstimatedStandardDeviation,  
  lower.tail = TRUE, log.p = FALSE)  
Difference = QuantileValue - QF 
QuantileValue; PDF; CDF; QF 
## [1] 0 
## [1] 0.3989423 
## [1] 0.5 
## [1] 0 
This program provides an illustration of the lack of precision when dealing with numeric calculations. 
NumberOfObservations = 201 
D <- c(1:NumberOfObservations)   # Quantile input 
N <- c(1:NumberOfObservations)   # CDF input 
N1 <- c(1:NumberOfObservations)  # First estimate of CDF 
D1 <- c(1:NumberOfObservations)  # First estimate of quantile 
DE <- c(1:NumberOfObservations)  # Quantile estimation error 
N2 <- c(1:NumberOfObservations)  # Second estimate of CDF 
D2 <- c(1:NumberOfObservations)  # Second estimate of quantile 
NE <- c(1:NumberOfObservations)  # CDF estimation error 
n <- c(1:NumberOfObservations)   # Estimated PDF 
EstimatedMean = 0 # Mean 
EstimatedStandardDeviation = 1 # Standard deviation 

Estimation iteration seeking to introduce machine error. 
for(i in 1:NumberOfObservations){ 
  D[i] <- -5.0 + 0.05*as.double((i-1)) 
  D[i] <- D[i] * EstimatedStandardDeviation + EstimatedMean 
  N1[i] <- pnorm(D[i], EstimatedMean, EstimatedStandardDeviation) 
  n[i] <- dnorm(D[i], EstimatedMean, EstimatedStandardDeviation) 
  D1[i] <- qnorm(N1[i], EstimatedMean, EstimatedStandardDeviation) 
  DE[i] <- D1[i] - D[i] 
  N[i] <- -0.005 + 0.005*as.double(i) 
  D2[i] <- qnorm(N[i], EstimatedMean, EstimatedStandardDeviation) 
  N2[i] <- pnorm(D2[i], EstimatedMean, EstimatedStandardDeviation) 
  NE[i] <- N2[i] - N[i] 
} 
MaxNError <- max(abs(NE), na.rm=TRUE) 
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MaxDError <- max(abs(DE), na.rm=TRUE) 
MaxNError; MaxDError 
# Standard normal probability density function plot 
MaxValue = max(n, na.rm=TRUE); MinValue = min(n, na.rm=TRUE); MaxValue; MinValue 
ylim1 = c(1:2); ylim1[1] = MinValue; ylim1[2] = MaxValue 
MaxValue = max(D, na.rm=TRUE); MinValue = min(D ,na.rm=TRUE); MaxValue; MinValue 
xlim1 = c(1:2); xlim1[1] = MinValue; xlim1[2] = MaxValue 
xTitle = "D"; yTitle = "n" 
mTitle = "Standard Normal Probability Density Function" 
plot(D, n, type = "l", main = mTitle, xlab = xTitle, ylab = yTitle, xlim = xlim1,  
  ylim = ylim1, pch = 1, cex = 0.5) 
# Standard normal cumulative distribution function plot 
MaxValue = max(N1, na.rm=TRUE); MinValue = min(N1, na.rm=TRUE); MaxValue; MinValue 
ylim1 = c(1:2); ylim1[1] = MinValue; ylim1[2] = MaxValue 
MaxValue = max(D, na.rm=TRUE); MinValue = min(D ,na.rm=TRUE); MaxValue; MinValue 
xlim1 = c(1:2); xlim1[1] = MinValue; xlim1[2] = MaxValue 
xTitle = "D"; yTitle = "N" 
mTitle = "Standard Normal Cumulative Distribution Function" 
plot(D, N1, type = "l", main = mTitle, xlab = xTitle, ylab = yTitle, xlim = xlim1,  
  ylim = ylim1, pch = 1, cex = 0.5) 
# Estimation error in D 
MaxValue = max(DE, na.rm=TRUE); MinValue = min(DE, na.rm=TRUE); MaxValue; MinValue 
ylim1 = c(1:2); ylim1[1] = MinValue; ylim1[2] = MaxValue 
MaxValue = max(D, na.rm=TRUE); MinValue = min(D ,na.rm=TRUE); MaxValue; MinValue 
xlim1 = c(1:2); xlim1[1] = MinValue; xlim1[2] = MaxValue 
xTitle = "D"; yTitle = "DE" 
mTitle = "Estimation Error in D" 
plot(D, DE, type = "p", main = mTitle, xlab = xTitle, ylab = yTitle, xlim = xlim1,  
  ylim = ylim1, pch = 1, cex = 0.5) 
# Estimation error in N 
MaxValue = max(NE, na.rm=TRUE); MinValue = min(NE, na.rm=TRUE); MaxValue; MinValue 
ylim1 = c(1:2); ylim1[1] = MinValue; ylim1[2] = MaxValue 
MaxValue = max(N, na.rm=TRUE); MinValue = min(N ,na.rm=TRUE); MaxValue; MinValue 
xlim1 = c(1:2); xlim1[1] = MinValue; xlim1[2] = MaxValue 
xTitle = "N"; yTitle = "NE" 
mTitle = "Estimation Error in N" 
plot(N, NE, type = "p", main = mTitle, xlab = xTitle, ylab = yTitle, xlim = xlim1,  
  ylim = ylim1, pch = 2, cex = 0.75)  # pch = 2 is triangle, cex is size 
 

Module 3.3. Univariate Random Numbers 
See Univariate RNG Test.R. There is also a supplemental file exploring large samples in Univariate RNG 
Large Sample Test.R. 
Univariate RNG Test.R (Selected Excerpts and Output) 
The following program explores various aspects of random number generation. The following code generates 
a vector of 100 uniformly distributed real numbers between 0 and 1 and calculates the mean and standard 
deviation (appropriately formatted for display). 
y = runif(NumberOfObservations, LowerBound, UpperBound) 
yMean = mean(y) 
… 
yMean <- format(yMean, trim = FALSE, digits = NULL, nsmall = 4, justify = "right") 
yStdDev = sd(y) 
yStdDev <- format(yStdDev, trim = FALSE, digits = NULL, nsmall = 4, justify = "right") 

The following generates a vector of uniformly distributed integer numbers, adjusts for upper and lower 
bounds, and calculates the mean and standard deviation (appropriately formatted for display). 
y = sample.int(NumberOfIntegers, size=NumberOfObservations, replace = TRUE, prob = NULL) 
y = y + LowerBound - 1 # Adjust integer vector for lower bound, lower bound not possible 
yMean = mean(y) 
yMean <- format(yMean, trim = FALSE, digits = NULL, nsmall = 4, justify = "right") 
yStdDev = sd(y) 
yStdDev <- format(yStdDev, trim = FALSE, digits = NULL, nsmall = 4, justify = "right") 
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The following code generates a vector of uniformly distributed real numbers between a lower and upper 
bound and calculates the mean and standard deviation (appropriately formatted for display). 
y = runif(NumberOfObservations, LowerBound, UpperBound) 
yMean = mean(y) 
yMean <- format(yMean, trim = FALSE, digits = NULL, nsmall = 4, justify = "right") 
yStdDev = sd(y) 
yStdDev <- format(yStdDev, trim = FALSE, digits = NULL, nsmall = 4, justify = "right") 

The following code generates a vector of normally distributed numbers with mean 0 and standard deviation 
1. The sample mean and standard deviation are calculated illustrating sample error. 
PMean = 0 
PStandardDeviation = 1 
y = rnorm(NumberOfObservations, PMean, PStandardDeviation)  
yMean = mean(y) 
… 
yStdDev = sd(y) 
The following code generates a vector of normally distributed numbers with a population mean 10 and 
population standard deviation 30. The sample mean and standard deviation are calculated illustrating sample 
error. 
PMean = 10.0 
PStandardDeviation = 30.0 
NumberOfObservations = 100 
… 
y = rnorm(NumberOfObservations, PMean, PStandardDeviation)  
The following code generates a binary vector (Bernoulli distribution) based on a desired likelihood. The 
sample mean and standard deviation are calculated illustrating sample error. 
DesiredLikelihood = 0.25 # Probability of success 
NumberOfObservations = 100 
LowerBound = 0 # Minimum 
UpperBound = 1 # Maximum 
x = c(1:NumberOfObservations) 
y = c(1:NumberOfObservations) 
y = runif(NumberOfObservations, LowerBound, UpperBound) 
z = c(1:NumberOfObservations) 
for(i in 1:NumberOfObservations){ 
  if(y[i] < DesiredLikelihood) y[i] = 1 
  else y[i] = 0 
  z[i] = DesiredLikelihood 
} 
yMean = mean(y) 
yStdDev = sd(y) 
 
Univariate RNG Large Sample Test.R (Selected Excerpts and Output) 
The following program explores various aspects of random number generation when the sample size is very 
large. A data.frame is defined (FRMDSTATS) and output is returned from functions within this data.frame. 
The first illustration is a uniformly distributed real vector. Note simulation time is recorded. 
FRMDSTATS <- data.frame(SampleMean, SampleStandardDeviation, PopulationMean,  
  PopulationStandardDeviation, SimulationTimeInSeconds) 
# 
# Example 1: Uniform Real 
# 
FRMUniformReal <- function(FRMDSTATS, SampleSize, RealLowerBound, UpperBound) { 
# Return CPU (Central Processing Unit) times that the expression () used 
  Time <- system.time(Draw<-runif(SampleSize, LowerBound, UpperBound), gcFirst = TRUE) 
  FRMDSTATS[1] = mean(Draw, na.rm = TRUE) # Sample mean 
  FRMDSTATS[2] = sd(Draw, na.rm = TRUE) # Sample standard deviation 
  FRMDSTATS[3] = (LowerBound + UpperBound)/2.0 # Population mean 
  FRMDSTATS[4] = (((UpperBound - LowerBound)^2)/12.0)^0.5 # Pop. standard deviation 
  FRMDSTATS[5] = Time[3] # Simulation Time In Seconds 
  return(FRMDSTATS) 
} 
# Test the function 
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SampleSize = 1000000 
UpperBound = 100 
LowerBound = -100 
USS <- FRMUniformReal(FRMDSTATS, SampleSize, RealLowerBound, UpperBound) 
USS 
##   SampleMean SampleStandardDeviation PopulationMean 
## 1     0.1961                   57.73              0 
##   PopulationStandardDeviation SimulationTimeInSeconds 
## 1                       57.74                   0.029 
The code below generates is a uniformly distributed integer vector.  
UpperBound = 100 
LowerBound = 0 
Draw <- runif(SampleSize,0,1) 
for (i in 1:SampleSize){ 
  Draw[i] = as.integer(Draw[i] * (UpperBound - LowerBound + 1)) + LowerBound 
} 
SampleMean = mean(Draw, na.rm = TRUE) 
SampleStandardDeviation = sd(Draw, na.rm = TRUE) 
PopulationMean = (LowerBound + UpperBound)/2.0 
PopulationStandardDeviation = (((UpperBound - LowerBound + 1)^2 - 1.0)/12.0)^0.5 
Time <- system.time(runif(SampleSize, LowerBound, UpperBound), gcFirst = TRUE) 
SimulationTimeInSeconds = Time[3] # Simulation Time In Seconds 
USS <- FRMDSTATS 
USS[1] = PopulationMean 
USS[2] = PopulationStandardDeviation 
USS[3] = SampleMean 
USS[4] = SampleStandardDeviation 
USS[5] = SimulationTimeInSeconds 
USS 
##   SampleMean SampleStandardDeviation PopulationMean 
## 1         50                   29.15          50.03 
##   PopulationStandardDeviation SimulationTimeInSeconds 
## 1                       29.14                   0.031 
The code below generates is a vector of binary values (0 or 1) to estimate likelihood.  
FRMLikelihood <- function(FRMDSTATS, SampleSize, Likelihood) { 
  Time <- system.time(Draw <- runif(SampleSize, 0, 1), gcFirst = TRUE) 
  for(i in 1:SampleSize){ 
    if(Draw[i] <= DesiredLikelihood) Draw[i] = 1.0 
    else Draw[i] = 0.0 
  } 
  FRMDSTATS[1] = mean(Draw, na.rm = TRUE) # Sample mean 
  FRMDSTATS[2] = sd(Draw, na.rm = TRUE) # Sample standard deviation 
  FRMDSTATS[3] = DesiredLikelihood # Population mean 
  FRMDSTATS[4] = sqrt(DesiredLikelihood-(DesiredLikelihood^2.0)) # Population standard 
deviation 
  FRMDSTATS[5] = Time[3] # Simulation Time In Seconds 
  return(FRMDSTATS) 
} 
# Test the function 
SampleSize = 1000000 
DesiredLikelihood = 0.5 
USS <- FRMLikelihood(FRMDSTATS, SampleSize, Likelihood) 
USS 
##   SampleMean SampleStandardDeviation PopulationMean 
## 1     0.5004                     0.5            0.5 
##   PopulationStandardDeviation SimulationTimeInSeconds 
## 1                         0.5                   0.029 

The code below generates is a normally distributed vector.  
FRMNormal <- function(FRMDSTATS, SampleSize, NMean, NSD) { 
  Time <- system.time(Draw <- rnorm(SampleSize, NMean, NSD), gcFirst = TRUE) 
  FRMDSTATS[1] = mean(Draw, na.rm = TRUE) # Sample mean 
  FRMDSTATS[2] = sd(Draw, na.rm = TRUE) # Sample standard deviation 
  FRMDSTATS[3] = NMean # Population mean 
  FRMDSTATS[4] = NSD # Population standard deviation 
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  FRMDSTATS[5] = Time[3] # Simulation Time In Seconds 
  return(FRMDSTATS) 
} 
# Test the function 
SampleSize = 10000000 
NMean = 15.0 
NSD = 30.0 
USS <- FRMNormal(FRMDSTATS, SampleSize, NMean, NSD) 
USS 
##   SampleMean SampleStandardDeviation PopulationMean 
## 1      15.02                   30.01             15 
##   PopulationStandardDeviation SimulationTimeInSeconds 
## 1                          30                   0.857 
 

Module 3.4. The LSC Model: 
Curve Fitting Using Linear Regression 

See Regression Test.R and LSC Curve Fitting Test.R. There is also an input data file LSCInputData.dat. See 
also LSC Coefficient Sensitivity Test.R and LSC Regression Independent Variables Test.R. 
 
LSC Curve Fitting Test.R (Selected Excerpts and Output) 
This code is an implementation of the LSC model. We first need selected global parameters. 
> # Inputs 
> NumberOfMaturities <- 9 
> NumberOfFactors <- 3 
> N <- NumberOfFactors - 2 
> Tau <- c(1:N) 
> Tau[1] <- 2.0 
> NumberOfDates <- 5 
Need to fill the Maturity and Dates vectors. 
> Maturity <- c(1:NumberOfMaturities) 
> Maturity[1] <- LSCData$V2[1] 
> Maturity[2] <- LSCData$V3[1] 
> Maturity[3] <- LSCData$V4[1] 
> Maturity[4] <- LSCData$V5[1] 
> Maturity[5] <- LSCData$V6[1] 
> Maturity[6] <- LSCData$V7[1] 
> Maturity[7] <- LSCData$V8[1] 
> Maturity[8] <- LSCData$V9[1] 
> Maturity[9] <- LSCData$V10[1] 
> Dates <- c(1:NumberOfDates) 
> for(i in 1:NumberOfDates){ 
+   Dates[i] = as.character(LSCData$V1[i+1]) 
+ } 

Place input rates in easy to understand matrix. 
> # Place input rates in matrix 
> Rates <- matrix(nrow = NumberOfDates, ncol = NumberOfMaturities) 
> for(i in 1:NumberOfDates){ 
+   Rates[i,1] <- LSCData$V2[i+1] 
+   Rates[i,2] <- LSCData$V3[i+1] 
+   Rates[i,3] <- LSCData$V4[i+1] 
+   Rates[i,4] <- LSCData$V5[i+1] 
+   Rates[i,5] <- LSCData$V6[i+1] 
+   Rates[i,6] <- LSCData$V7[i+1] 
+   Rates[i,7] <- LSCData$V8[i+1] 
+   Rates[i,8] <- LSCData$V9[i+1] 
+   Rates[i,9] <- LSCData$V10[i+1] 
+ } 
Compute the appropriate factor values. 
> Factors <- matrix(nrow = NumberOfFactors - 1, ncol = NumberOfMaturities) 
> Factors # Note Factors is filled with NAs 
     [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] 
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[1,]   NA   NA   NA   NA   NA   NA   NA   NA   NA 
[2,]   NA   NA   NA   NA   NA   NA   NA   NA   NA 
> for (j in 1:NumberOfFactors-1) { 
+   for (i in 1:NumberOfMaturities) { 
+     if (j == 1) Factors[j,i] = (1.0 - exp(-Maturity[i]/Tau[j]))/(Maturity[i]/Tau[j]) 
+     else Factors[j, i] = (1.0 - exp(-Maturity[i]/Tau[j-1]))/(Maturity[i]/Tau[j-1]) -  
+       exp(-Maturity[i]/Tau[j-1]) 
+   } 
+ } 
Compute LSC parameters and place in vectors for future use. 
> Intercept <- c(1:NumberOfDates) # Vectors for output 
> Slope <- c(1:NumberOfDates) 
> Curvature <- c(1:NumberOfDates) 
> # OLS regressions for each date 
> for (i in 1:NumberOfDates){ # Cross-section analysis of each date 
+   LSC <- lm(formula = Rates[i,]~Factors[1,]+Factors[2,]) 
+   Betas <- LSC$coefficients # Make clear grabbing beta coefficients 
+   Intercept[i] <- Betas[1] 
+   Slope[i] <- Betas[2] 
+   Curvature[i] <- Betas[3] 
+ } 
Compute fitted rates based on LSC output. 
> # Work on fitted data for plots 
> FittedRates <- matrix(nrow = NumberOfDates, ncol = NumberOfMaturities) 
> for (i in 1:NumberOfDates) { # Fitted values for each date 
+   for (j in 1:NumberOfMaturities){ 
+     FittedRates[i,j] = Intercept[i] + Slope[i] *  
+       ((1.0 - exp(-Maturity[j]/Tau[1]))/(Maturity[j]/Tau[1])) +  
+       Curvature[i]*((1.0 - exp(-Maturity[j]/Tau[1]))/(Maturity[j]/Tau[1]) -  
+       exp(-Maturity[j]/Tau[1])) 
+   } 
+ } 

Format and generate a separate plot for each date. 
> # Plots 
> x <- Maturity 
> y1 <- Rates        # Helps to check output 
> y2 <- FittedRates 
> MinXValue = 0; MaxXValue = max(x) 
> xlim1 = c(1:2); xlim1[1] = MinXValue; xlim1[2] = MaxXValue 
> MinYValue = min(y1, y2); MaxYValue = max(y1, y2) 
> ylim1 = c(1:2); ylim1[1] = MinYValue; ylim1[2] = MaxYValue 
> legtxt = c("Actual Rates","Fitted Rates") 
> mTitle = "Swap Rates" 
> xTitle = "Maturity" 
> yTitle = "Rates" 
> lTitle <- "Parameter" 
> legtxt = c("Actual","Fitted") 
> for (i in 1:NumberOfDates) { 
+   plot(x, y1[i,], type="b", main=mTitle, sub=Dates[i], xlab=xTitle,  
+     ylab=yTitle, col="blue", xlim = xlim1, ylim = ylim1, pch = 1, cex = 1.0) 
+   lines(Maturity, FittedRates[i,], type="b", col="red", xlim = xlim1,  
+     ylim = ylim1, pch = 2, cex = 1.0) 
+   legend("topleft", legtxt, cex = 1.0, lwd = c(1, 1), lty = c(1, 1), 
+     col = c("blue","red"), pch = c(1,2), bty = "n", title = lTitle) 
+ } 
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Module 3.5. Sorting Data 
See Sorting Test.R. There are also two input data files, SortingData.dat and SO.PRN. SortingData.dat 
contains 100 real numbers and SO.PRN contains a variety of variables related to Southern Company’s daily 
stock prices. 
Sorting Data Test.R (Selected Excerpts and Output) 
This code illustrates several uses of sorting data. First, the data.table library has a fast inputting function, 
fread(). 
SortData <- fread("SortingData.dat", header = FALSE, sep = " ") 
head(SortData,5) 
##       V1 
## 1: 29.82 
## 2: 71.51 
## 3:  3.30 
## 4: 87.44 
## 5: 53.42 
tail(SortData,5) 
##       V1 
## 1: 25.01 
## 2: 82.09 
## 3: 89.67 
## 4: 57.08 
## 5: 38.27 
The base library has a simple, single vector sorting function, sort(). 
DataVectorSorted <- sort(DataVector, na.last = NA, method = "quick")  
The comma delimited data contained in SO.PRN is read in with read.delim or fread. The contents of this file 
is identified with sapply(). We may want to examine just subsets of the entire dataset, hence we identify 
upper and lower bounds. 
LowerDate <- 19001231 # No bounds 
UpperDate <- 25001231 
# LowerDate <- 20061231 # Pre and post crisis 
# UpperDate <- 20201231 
# SortData <- read.delim("SO.PRN", header = TRUE, sep = ",") 
Company <- "Southern Company" # Used in plot titles, change is new data used 
SortData <- fread("SO.PRN", sep = ",") # Input variables faster, data.table 
sapply(SortData, class) # Way too much stuff 
After a bit of data manipulation, the file is sorted based on first differences of the stock price (vector FD 
within SortData). The resulting sort is illustrated with a histogram overlaid with the sample parameters 
applied to the normal distribution. 
SortDataFD <- SortData[order(SortData$FD), ] 
… 
y <- SortDataFD$FD 
… 
hist(y, main=mTitle, breaks=50, freq=FALSE, col="red", labels = FALSE,  
  sub=sTitle, xlab=xTitle, ylab=yTitle, plot=TRUE, axes=TRUE, density=10)   
curve(dnorm(x, yMean, yStdDev), add=TRUE, col="darkblue", lwd=4) 

To illustrate the distributional implications of first differences when compared to percentage changes, the 
dataset is sorted by rate of return and the results are graphically illustrated. 
SortDataR <- SortData[order(SortData$R), ] 
… 
y <- SortDataR$R*100 # Express as percent 
… 
hist(y, main=mTitle, breaks=50, freq=FALSE, col="red", labels = FALSE,  
  sub=sTitle, xlab=xTitle, ylab=yTitle, plot=TRUE, axes=TRUE, density=10)   
curve(dnorm(x, yMean, yStdDev), add=TRUE, col="darkblue", lwd=4) 
Next we illustrate multiple sorting by year, then month, and then day. The closing price, first differences, and 
rates of return are plotted. Note in the last couple of plots, the y-axis is highly limited so as to illustrate the 
influence of decimal prices.  
SortDataDate <- SortData[order(SortData$Year, SortData$Month, SortData$Day), ] 
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 To gain better understanding of the unstable nature of financial data, run this program with different five 
year subperiods. 
 

Module 3.6. Embedded Parameters 
See Embedded Functions Test.R.  
 
Embedded Functions Test.R (Selected Excerpts and Output) 
This code illustrates several functions as well as the optimize() function. After inputting specific values of 
bond parameters, a function is created to calculate the bond value (with accrued interest). 
FRMBondValue <- function(tempYieldToMaturity, tempCouponRate, tempParValue,  
  tempYearsToMaturity){ 
  PV = 0.0 # Present value variable 
  for (i in 1:tempYearsToMaturity){ 
    PV = PV + ((tempCouponRate/100.0)*tempParValue) /  
      ((1.0 + (tempYieldToMaturity/100.0))^i) 
  } 
  return(PV + tempParValue /  
    ((1.0 + (tempYieldToMaturity/100.0))^tempYearsToMaturity)) 
} 
# Test the function 
BondValue = FRMBondValue(YieldToMaturity, CouponRate, ParValue,  
  YearsToMaturity) 
To solve for yield to maturity, the goal is the find the yield to maturity such that the model value equals the 
market price as illustrated in the following function. This function receives a temporary yield to maturity and 
computes the difference between the actual market price and the model value. 
FRMPriceDifference <- function(tempYieldToMaturity, tempCouponRate,  
  tempParValue, tempYearsToMaturity, tempActualPrice){ 
  PV = 0.0 # Present value variable 
  for (i in 1:tempYearsToMaturity){ 
    PV = PV + ((tempCouponRate/100.0)*tempParValue) /  
      ((1.0 + (tempYieldToMaturity/100.0))^i) 
  } 
  return(abs(tempActualPrice - (PV + tempParValue  
    / ((1.0 + (tempYieldToMaturity/100.0))^tempYearsToMaturity)))) 
} 
# Test the function -- should be 0 if using BondValue from calculation above 
BondValue = 90 
TestDifference = FRMPriceDifference(YieldToMaturity, CouponRate, ParValue,  
  YearsToMaturity, BondValue) 
This difference function is used to solve for the yield to maturity using the optimize routine. The program 
concludes with an overlay plot of model bond values for three different bonds. 
solution = optimize(FRMPriceDifference, tempCouponRate = CouponRate,  
  tempParValue = ParValue, tempYearsToMaturity = YearsToMaturity,  
  tempActualPrice = ActualPrice, interval = c(0,1000),  
  tol = .Machine$double.eps^0.25) 
solution 
# Print YieldToMaturity that equates actual and model bond prices 
BondYieldToMaturity = solution$minimum 
BondYieldToMaturity 
# Data for plots 
YieldToMaturity = c(1:NumberOfObservations) 
BondValue30 <- c(1:NumberOfObservations) 
BondValue15 <- c(1:NumberOfObservations) 
BondValue1 <- c(1:NumberOfObservations) 
YieldToMaturityEst30 <- c(1:NumberOfObservations) 
YieldToMaturityEst15 <- c(1:NumberOfObservations) 
YieldToMaturityEst1 <- c(1:NumberOfObservations) 
YieldToMaturityError30 <- c(1:NumberOfObservations) 
YieldToMaturityError15 <- c(1:NumberOfObservations) 
YieldToMaturityError1 <- c(1:NumberOfObservations) 
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for(i in 1:NumberOfObservations){ 
  YieldToMaturity[i] <- as.double(YieldLowerBound + (i-1)*YieldStepSize) 
  YearsToMaturity = 1 
First, take yield to maturity and compute bond value. 
  BondValue1[i] = FRMBondValue(YieldToMaturity[i], CouponRate, ParValue,  
    YearsToMaturity) 
 Second, take bond value and solve for yield to maturity. 
 solution = optimize(FRMPriceDifferenceWFunction, tempCouponRate = CouponRate,  
    tempParValue = ParValue, tempYearsToMaturity = YearsToMaturity,  
    tempActualPrice = BondValue1[i], interval = c(0,1000),  
    tol = .Machine$double.eps^0.25) 
  YieldToMaturityEst1[i] = solution$minimum 
 Third, compare original yield to maturity with the estimate and appraise errors. 
 YieldToMaturityError1[i] = YieldToMaturityEst1[i] - YieldToMaturity[i] 
  YearsToMaturity = 15 
  BondValue15[i] = FRMBondValue(YieldToMaturity[i], CouponRate, ParValue, 
    YearsToMaturity) 
  solution = optimize(FRMPriceDifferenceWFunction, tempCouponRate = CouponRate,  
    tempParValue = ParValue, tempYearsToMaturity = YearsToMaturity,  
    tempActualPrice = BondValue15[i], interval = c(0,1000),  
    tol = .Machine$double.eps^0.25) 
  YieldToMaturityEst15[i] = solution$minimum 
  YieldToMaturityError15[i] = YieldToMaturityEst15[i] - YieldToMaturity[i] 
  YearsToMaturity = 30 
  BondValue30[i] = FRMBondValue(YieldToMaturity[i], CouponRate, ParValue,  
    YearsToMaturity) 
  solution = optimize(FRMPriceDifferenceWFunction, tempCouponRate = CouponRate,  
    tempParValue = ParValue, tempYearsToMaturity = YearsToMaturity,  
    tempActualPrice = BondValue30[i], interval = c(0,1000),  
    tol = .Machine$double.eps^0.25) 
  YieldToMaturityEst30[i] = solution$minimum 
  YieldToMaturityError30[i] = YieldToMaturityEst30[i] - YieldToMaturity[i] 
} 
# Note: Maximum error is all the same (when ytm is zero, see graph below) 
max(abs(YieldToMaturityError1)) 
max(abs(YieldToMaturityError15)) 
max(abs(YieldToMaturityError30)) 
# Simple plot 
MaxXValue = max(YieldToMaturity) 
MinXValue = min(YieldToMaturity) 
xlim1 = c(1:2); xlim1[1] = MinXValue; xlim1[2] = MaxXValue 
MaxYValue = max(BondValue1, BondValue15, BondValue30) 
MinYValue = min(BondValue1, BondValue15, BondValue30) 
ylim1 = c(1:2); ylim1[1] = MinYValue; ylim1[2] = MaxYValue 
legtxt = c("30 Year","15 Year","1 Year") 
Title1 = "Bond Price-Yield Relation" 
xTitle = "Yield To Maturity" 
yTitle = "Bond Value" 
# Plot footers 
TC = paste0('Coupon = ', CouponRate, '%') 
TPar = paste0(', Par = $', ParValue) 
sTitle = paste0(TC, TPar) 
lTitle = "Maturity" 
plot(YieldToMaturity, BondValue30, type="b", main=Title1, 
  sub=sTitle, xlab=xTitle, ylab=yTitle, col="black", xlim = xlim1,  
  ylim = ylim1, pch = 1, cex = 0.5, lty = 1) 
lines(YieldToMaturity,BondValue15, type="b", col="black", xlim = xlim1,  
  ylim = ylim1, pch = 2, cex = 0.5, lty = 2) 
lines(YieldToMaturity,BondValue1, type="b", col="black", xlim = xlim1,  
  ylim = ylim1, pch = 3, cex = 0.5, lty = 3) 
legend("topright", legtxt, cex = 0.75, lwd = c(1,1,1), lty = c(1,2,3),  
  col = c("black","black","black"), pch = c(1, 2, 3), bty = "n",  
  title = lTitle) 
# Simple plot of errors 
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MaxXValue = max(YieldToMaturity) 
MinXValue = min(YieldToMaturity) 
xlim1 = c(1:2); xlim1[1] = MinXValue; xlim1[2] = MaxXValue 
MaxYValue = max(YieldToMaturityError1, YieldToMaturityError15, YieldToMaturityError30) 
MinYValue = min(YieldToMaturityError1, YieldToMaturityError15, YieldToMaturityError30) 
ylim1 = c(1:2); ylim1[1] = MinYValue; ylim1[2] = MaxYValue 
legtxt = c("30 Year","15 Year","1 Year") 
Title1 = "Estimation Error by Yield" 
xTitle = "Yield To Maturity" 
yTitle = "Estimation Error" 
# Plot footers 
TC = paste0('Coupon = ', CouponRate, '%') 
TPar = paste0(', Par = $', ParValue) 
sTitle = paste0(TC, TPar) 
lTitle = "Maturity" 
plot(YieldToMaturity, YieldToMaturityError30, type="b", main=Title1, 
     sub=sTitle, xlab=xTitle, ylab=yTitle, col="black", xlim = xlim1,  
     ylim = ylim1, pch = 1, cex = 0.5, lty = 1) 
lines(YieldToMaturity,YieldToMaturityError15, type="b", col="black", xlim = xlim1,  
      ylim = ylim1, pch = 2, cex = 0.5, lty = 2) 
lines(YieldToMaturity,YieldToMaturityError1, type="b", col="black", xlim = xlim1,  
      ylim = ylim1, pch = 3, cex = 0.5, lty = 3) 
legend("topright", legtxt, cex = 0.75, lwd = c(1,1,1), lty = c(1,2,3),  
       col = c("black","black","black"), pch = c(1, 2, 3), bty = "n",  
       title = lTitle) 
 

Module 3.7: Numerical Integration and the Lognormal Distribution 
See Numerical Integration Test.R. We extensively review the normal and lognormal distribution properties 
as they are widely used in quantitative finance. See also 3.7 Numerical Double Integration Test.R that 
illustrates double integrals of both the normal and lognormal distributions. Double integral solution tools are 
useful particularly for spread options and compound options. 
 
Numerical Integration Test.R (Selected Excerpts and Output) 
In two separate files, we build functions for selected parameters related to the normal and lognormal 
distributions. See Normal Distribution Functions.R and Lognormal Distribution Functions.R. 
This code starts with test data and testing of several of these functions. 
# Test Data 
StockPrice = 100.0 
StrikePrice = 100.0 
InterestRate = 12.0 
DividendYield = 0.0 
Volatility = 30.0 
TimeToMaturity = 1.0 
source('Normal Distribution Functions.R') 
source('Lognormal Distribution Functions.R') 
# 
# Function tests 
# 
NMean <- NormalMean(StockPrice, InterestRate, DividendYield, TimeToMaturity,  
  Volatility) 
NSD <- NormalStandardDeviation(Volatility, TimeToMaturity) 
NSKewness <- NormalSkewness() # Known to be zero 
NExcessKurtosis <- NormalExcessKurtosis() # Known to be zero 
NEntropy <- NormalEntropy(Volatility, TimeToMaturity) 
LNMean <- LognormalMean(StockPrice, InterestRate, DividendYield,  
  TimeToMaturity, Volatility) 
LNSD <- LognormalStandardDeviation(StockPrice, InterestRate, DividendYield,  
  TimeToMaturity, Volatility) 
LNSKewness <- LognormalSkewness(Volatility, TimeToMaturity) 
LNExcessKurtosis <- LognormalExcessKurtosis(Volatility, TimeToMaturity) 
LNEntropy <- LognormalEntropy(StockPrice, InterestRate, DividendYield,  
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  TimeToMaturity, Volatility) 
# 
# Test normal PDF via integration 
# 
d = 0 
LowerBound = -Inf 
NMean <- NormalMean(StockPrice, InterestRate, DividendYield, TimeToMaturity,  
  Volatility) 
NSD <- NormalStandardDeviation(Volatility, TimeToMaturity) 
UpperBound = NMean 
Results = integrate(NormalPDF, LowerBound, UpperBound, NMean, NSD) 
N = Results$value 
N 
[1] 0.5 
Integration is illustrated with the integrate() function related to N(d) in numerous option valuation models. 
NMean <- NormalMean(StockPrice, InterestRate, DividendYield, TimeToMaturity,  
  Volatility) 
NSD <- NormalStandardDeviation(Volatility, TimeToMaturity) 
d2 = (NMean - log(StrikePrice)) / NSD 
LowerBound = -Inf 
UpperBound = d2 
Results = integrate(NormalPDF, LowerBound, UpperBound, 0, 1) 
Nd2V = Results$value 
Nd2V 
[1] 0.5987063 
… 
Nd1V = Nd1(StockPrice, StrikePrice, InterestRate, DividendYield,  
  TimeToMaturity, Volatility) 
Nd2V = Nd2(StockPrice, StrikePrice, InterestRate, DividendYield,  
  TimeToMaturity, Volatility) 
The probability, under the equivalent martingale measure, of an option being in the money is related to 
N(d2). 
CallITMProb = Nd2(StockPrice, StrikePrice, InterestRate, DividendYield,  
  TimeToMaturity, Volatility) 
PutITMProb <- 1.0 - Nd2(StockPrice, StrikePrice, InterestRate, DividendYield,  
  TimeToMaturity, Volatility) 
TotalProb = CallITMProb + PutITMProb 
CallITMProb; PutITMProb; TotalProb  
[1] 0.5987063 
[1] 0.4012937 
[1] 1 
With this set-up, several interesting observations can be made. First, we explore further the influence of 
volatility on both the normal and lognormal PDFs and CDFs. See Density and Distribution Study.R. Based 
on the following loop, we illustrate the following PDFs and CDFs. 
OriginalVolatility <- Volatility 
Increment <- 50 
for(i in 1:5){ 
  Volatility <- OriginalVolatility + (i-1)*Increment 
  source('Density and Distribution Study.R') 
} 
Volatility <- OriginalVolatility 

 
Numerical Double Integration Test.R (Selected Excerpts and Output) 
There are several ways to integrate either the normal or lognormal distribution. We illustrate just a few in R 
here. First, simply taking the double integral of the normal distribution is illustrated in a three dimensional 
plot based on a standard bivariate normal. 
    N2CDFV1[i, j] <- as.numeric(integral2(Normal2PDF, xmin = MinX1, xmax = MaxX1, 
      ymin=MinX2, ymax = MaxX2, reltol = 1e-6, Mu1 = Mu1, Mu2 = Mu2, 
      SD1 = SD1, SD2 = SD2, rho = rho)[1]) 
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Figure 3R.7.6 Bivariate Normal CDF based on double integral 

 
 
Alternatively, we can use the mvtnorm package to compute the same bivariate normal CDF. 
 
Figure 3R.7.7 Bivariate Normal CDF based on mvtnorm package 

 
 
Finally, we can used the pbivnorm package to compute the standard normal bivariate CDF. 
    N2CDFV3[i, j] <- pbivnorm(x = MaxX1, y = MaxX2, rho = rho, recycle = TRUE) 
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Figure 3R.7.8 Bivariate Normal CDF based on pbivnorm package 

 
 
Whenever using integration packages, it is always suggested to evaluate the differences between various 
calculation methodologies. We see below that the maximum absolute error is small. 
> MaxError12 <- max(abs(Error12)) 
> MaxError13 <- max(abs(Error13)) 
> MaxError23 <- max(abs(Error23)) 
> MaxError12; MaxError13; MaxError23 
[1] 1.688078e-08 
[1] 5.901631e-07 
[1] 5.73303e-07 
 


