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Module 12.5: DRM GBM-Based Compound Option Models 
Learning objectives 

• Apply Monte Carlo simulation to explore interactions between various inputs to the geometric 
Brownian motion compound option valuation model (call on call and put on call only) 

• Illustrate the insights gained from Monte Carlo simulation with a focus on correlation between the 
underlying instrument price and volatility as well as interest rates and volatility 

 
Executive summary 
Based on the material presented in Module 5.6 and Module 8.5, we illustrate applying Monte Carlo 
simulation to analyzing the value-at-risk within the GBM compound option valuation model (GBM COVM). 
Note that this model only works for European-style options. 
 
Central finance concepts 
Again, this module is designed to track closely with all modules in this chapter to facilitate comparison. The 
main idea is once we have a robust valuation model (Module 5.6) as well as an understanding of static risk 
measures (Module 8.5), we are now able to explore various dynamic risk measures. For a review of the 
valuation models used here see Module 5.6. 
GBM-based European-style compound option valuation models 
Recall there are several technical assumptions required for the GBM COVM to theoretically hold. The key 
assumptions include option are European-style, GBM, financing available at the risk-free interest rate, no 
market frictions, and constant volatility. Although in practice none of these assumptions are valid, still the 
GBM COVM is unique in its ability to address firm valuation and equity as a call option. GBM COVM, like 
other models illustrated in this chapter, is incredibly useful in providing guidance on a host of financial 
decisions, such as relative value (comparing one option with an alternative), future likelihoods (such as the 
probability of an option being in-the-money), and sensitivities (such as the Greeks like delta that measures 
the sensitivity of the option value to the underlying instrument price). 
 Because options are European-style, we assume a continuous cash flow yield of the underlying as well as 
a yield on the underlying option. Discrete dividends can be handled with the escrow method. 
Option valuation models and Value-at-Risk 
In the quantitative materials below, we explore in detail VaR metrics related to the following 19 option-
related strategies: 

• Long underlying (e.g., firm value) (LS) 
• Long compound call on call (LC, in-, at-, and out-of-the-money) 
• Long compound put on call (LP, in-, at-, and out-of-the-money) 
• Covered call writing (CCW, in-, at-, and out-of-the-money) 
• Protective put buying (PPB, in-, at-, and out-of-the-money) 
• Leveraged calls (LC, in-, at-, and out-of-the-money) 
• Leveraged puts (LP, in-, at-, and out-of-the-money) 

 
Covered call writing comprises long the underlying call option and short the compound call option. 

Recall in the context of stocks, the underlying is the firm, the underlying call option is the equity of the firm, 
and the compound option is the call or put on the underlying call (equity of firm). Protective put buying 
comprises long the underlying option and long the compound put on a call. Leveraged calls comprises long 
the underlying call and long the compound call on call. Leveraged puts comprises long the underlying call 
and short the compound put on call. 
 To illustrate this analysis, we assume the following inputs: 

• Underlying price = $100 
• Underlying strike price = $90, $100, and $110 
• Compound strike price = $20.46 (consistent with prior chapters) 
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• Interest rate = 5% 
• Underlying yield = 5% 
• Option yield = 0% 
• Volatility = 30% 
• Underlying call time to maturity = 5 years 
• Compound option time to maturity = 1 year 
For illustration, we assume the underlying price, interest rate, and volatility are subsequently random. 

Note that the option valuation framework assumes volatility and interest rates are constant. Dynamic risk 
management often requires a balance between theoretical models and practical implementation. Thus, we 
assume options are valued based on geometric Brownian motion compound option valuation model while 
simultaneously assuming the desired quantitative analysis is based on professional judgment within the firm. 

We assume the following parameterizations: 
• Horizon = 1 month 
• Confidence level = 95% 
• Number of simulations = 10,000 
• Means (annualized, continuously compounded, percentage change) 

o Underlying = 5% 
o Rate = 0% 
o Volatility = 0% 

• Standard deviations 
o Underlying = 30% 
o Rate = 10% 
o Volatility = 40% 

• Correlations 
o Underlying, Rate = –0.3 
o Rate, Volatility = 0.0 
o Underlying, Volatility = –0.5 

In the tables presented below, XL denotes the low strike price ($90), X denotes the mid strike price 
($100), and XH denotes the high strike price ($110). Thus, LCXH denotes the long call with a high strike 
price. Note that these various strategies require different levels of dollar investment; hence, for ease of 
analysis we report only return VaR (distance from $0) as opposed to dollar VaR. 

The results reported below are not expected to be similar to the GBMOVM results reported in Module 
12.3 as the parameterization of the GBM COVM. We do expect similar RVaR patterns, however. For 
completeness, we follow closely the format of the discussion from Module 12.3. 

Table 12.5.1 presents the results of the simulation based on the initial parameterization given above and 
allowing the correlation between stock returns and stock volatility to range from –0.75 to +0.75 incrementing 
by 0.25. Note that the number of simulations is 10,000 and the confidence level is 95%. The GBM COVM is 
“closed-form,” hence, the calculations are performed dramatically fast than the binomial model. Again, one 
unfortunate consequence is the lack of an American-style model. 
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Table 12.5.1 Return VaR Based on GBM COVM Stock Return and Volatility Correlation  

 
 

There are several insights that can be drawn from the table. First, the Long Stock (LS) row illustrates that 
Monte Carlo simulation even with 10,000 simulation results in variation of return value-at-risk (RVaR) at the 
95% confidence level. In this case where stock is an option on the firm, RVaR ranges from 5.59% (r = –
0.75) to 13.04% (r = 0.75). Thus, the optionality of the underlying stock is clearly seen with higher RVaR 
for higher correlations. This result is like GBMOVM results for long call, except the parameters are different. 

Second, focusing on the uncorrelated case (r = 0.0), RVaR increases with the strike price for Long Call 
(LC) ranging from 21.84% for the low strike price (XL) to 28.10% for the high strike price (XH). Recall the 
higher the strike price, the higher the implied leverage and hence, the higher the RVaR. We see the opposite 
pattern with puts. RVaR decreases with the strike price for Long Put (LP) ranging from 38.73% for the low 
strike price (XL) to 20.79% for the high strike price (XH). With puts, the higher the strike price, the lower 
the implied leverage (further in-the-money). 

Third, the remaining option blended strategies have dramatically lower RVaRs when compared to long 
calls and puts. The primary reason is the dramatically higher investment required for the underlying long 
stock position that is unleveraged. Note, however, with compound options where the stock itself is an 
underlying option, the leveraged positions have much higher RVaR. 

Fourth, the same patterns noted above hold for covered call writing and protective put buying. In both 
cases, the further out-of-the-money, the less risk mitigation and hence the higher RVaR. As expected, the 
opposite pattern holds for leveraged calls and puts. 

Fifth, the correlation between stock returns and volatility does influence RVaR although it has no direct 
theoretical impact on the underlying instrument’s (stock, calls, and puts) value. For long calls, the RVaR 
increases with correlation and for long puts, the RVaR decreases with correlation. For covered call writing, 
the RVaR decreases with correlation and for protective put buying, the RVaR increases with correlation. For 
leveraged calls, the RVaR increases with correlation and for leveraged puts, the RVaR decreases with 
correlation. 

In summary, although perhaps not a focus when valuing options, correlation between the underlying 
instrument returns and volatility is an important determinant of various dynamic risk measures, such as 
RVaR. 

Table 12.5.2 presents the results of the simulation allowing the correlation between stock returns and 
interest rates to range from –0.75 to +0.75 incrementing by 0.25. As expected, this correlation does not have 
a material impact on the RVaR estimates. 
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Table 12.5.2 Return VaR Based on GBM COVM Stock Return and Interest Rate Correlation  

 
 

Table 12.5.3 presents the results of the simulation allowing the correlation between volatility and interest 
rates to range from –0.75 to +0.75 incrementing by 0.25. As expected, this correlation does not have a 
material impact on the RVaR estimates. 

Table 12.5.3 Return VaR Based on GBM COVM Volatility and Interest Rate Correlation  

 
 
 In summary, the ability to conduct RVaR analyses under different sets of simulation assumptions 
dramatically increases the types of analysis possible for risk managers. 
 
Quantitative finance materials 
The quantitative analysis is based on prior materials covered in Modules 5.6 and 8.5. For convenience, we 
provide selected key formulas here. Recall the compound option pricing model (CO) observed at time t under 
geometric Brownian motion based on an underlying instrument ( ) with the compound option exercise 
price ( ) expiring at time 2 ( ) and the underlying option exercise price ( ) expiring at time 1 ( ) 
can be expressed as 

St
XC T1 XU T2 > T1
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 ,  

where indicator functions denote 

  and  

 .  

Recall a default-free, zero coupon, $1 par bond be expressed as 
 ,  
and the bivariate cumulative standard normal distribution 

 .  

Using a generic time to maturity, T, the periodic standard deviation are 
 .  
The correlation coefficient used in the bivariate distribution is 

 ,  

and thus 

 .  

Let  be defined such that underlying option is at-the-money or 

 ,  

where 

 ,  

 , and  

 .  

Let dij denote the upper bound of the bivariate normal cumulative distribution function where i = 1, 2 denotes 
whether the volatility term is added (i = 1) or subtracted (i = 2) and j = 1, 2 denotes whether the evaluation is 
S* at T1 (j = 1) or XU at T2 (j = 2). We define 

CO S ,t,T1,T2 ,ιC ,ιU( ) = ιCιUStBt ,T2 ,δBT1,T2 ,− q̂N2 ιCιUd11,ιUd12;ιCρ( )
−ιCιU XU Bt ,T2 ,r BT1,T2 ,− q̂N2 ιCιUd21,ιUd22;ιCρ( )− ιC XCBt ,T1,r N ιCιUd21( )
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 ,  

 , and  

 .  

 Thus, the initial value of the various options is determined based on the model above. The simulation is 
run, and the options are subsequently revalued incorporating the new values for the stock, rate, and volatility 
as well as the passage of calendar time. Once all the simulations are run, then return VaR is estimated and 
reported in the tables above. 
 There are several alternative strategies that could also be pursued. Selected potential strategies to consider 
include: 

• Short stock (designated cash margin percentage (e.g., 100%), mS) 
• Short call (designated cash margin percentage of underlying stock (e.g., 10%), mc) 
• Short put (designated cash margin percentage of underlying stock (e.g., 10%), mp) 
• Short CCW: Short stock, long call (synthetic leveraged long put: designated cash margin percentage 

of underlying stock (e.g., 10%), msCCW) 
• Short PPB: Short stock, short put (synthetic leveraged short put: designated cash margin percentage 

of underlying stock (e.g., 10%), msPPB) 
• LSC: Short stock, short call (leveraged short call) (synthetic leveraged short put: designated cash 

margin percentage of underlying stock (e.g., 10%), msLSC) 
• LLP: Short stock, long put (leveraged long put) (synthetic leveraged short put: designated cash 

margin percentage of underlying stock (e.g., 10%), msLLP) 
Further, one could add additional stocks to explore various cross-correlations. 

 
Summary 
As illustrated with these simple simulations, the ability to conduct RVaR analyses under different sets of 
simulation assumptions dramatically increases the types of analysis possible for risk managers. Risk 
managers should be constantly exploring various interactions as well as stress testing parameter assumptions. 
 
References 
See modules 5.2 and 8.1. 
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