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Module 12.1: DRM GBM-Based Binomial Models 
Learning objectives 

• Apply Monte Carlo simulation to explore interactions between various inputs to the geometric 
Brownian motion binomial option valuation model 

• Illustrate the insights gained from Monte Carlo simulation with a focus on correlation between the 
underlying stock price and volatility as well as interest rates and volatility 

 
Executive summary 
Based on the material presented in Module 5.2 and Module 8.1, we illustrate applying Monte Carlo 
simulation to analyzing the value-at-risk within the GBM binomial option valuation model (GBM BOVM) 
for both European-style and American-style options. 
 
Central finance concepts 
There are numerous ways to illustrate dynamic risk measures with options. We chose to focus on interactions 
among input parameters of a single instrument. 

The main idea is once we have a robust valuation model (Module 5.2) as well as an understanding of 
static risk measures (Module 8.1), we are now able to explore various dynamic risk measures. For a review 
of the valuation models used here see Module 5.2. We focus here on dividend yields and plain vanilla 
options. 
GBM-based European-style binomial option valuation models 
Recall the GBM-based binomial option framework is designed to converge to a lognormal distribution in the 
limit to be consistent with the GBMOVM. This binomial framework has several objectives: 

1. Multiplicative 
2. Recombining 
3. Incorporate dividends 
4. Address early exercise with American-style options  

Multiplicative and recombining are incorporated using u and d parameters at each node.  
 There are several GBM-based multiperiod valuation models including when there are no dividends, when 
a dividend yield is assumed, and when discrete dividends are assumed. Further, there are several alternative 
ways to frame these models such as based on digital valuation models.  
GBM-based American-style binomial option valuation models 
For American-style options, the early exercise potential must be incorporated. As discussed below, the 
approach typically taken is known as backward induction. At each node, we must compare the following 
values, the model option value, the early exercise value, and the lower boundary condition. The existence of 
various forms of dividends simply changes the required formulas. 
 With Monte Carlo simulations, the processing speed becomes a bit of a challenge. Fortunately, with 
modern computing power, it is easy to implement. 
Binomial option valuation models and value-at-risk 
In the quantitative materials below, we explore in detail VaR metrics related to the following 19 option-
related strategies: 

• Long stock (LS) 
• Long call (LC, in-, at-, and out-of-the-money) 
• Long put (LP, in-, at-, and out-of-the-money) 
• Covered call writing (CCW, in-, at-, and out-of-the-money) 
• Protective put buying (PPB, in-, at-, and out-of-the-money) 
• Leveraged calls (LC, in-, at-, and out-of-the-money) 
• Leveraged puts (LP, in-, at-, and out-of-the-money) 
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Covered call writing comprises long stock and short calls. Protective put buying comprises long stock and 
long put. Leveraged calls comprises long stock and long calls. Leveraged puts comprises long stock and 
short puts. 
 To illustrate this analysis, we assume the following inputs: 

• Stock price = $100 
• Strike price = $90, $100, and $110 
• Interest rate = 5% 
• Dividend yield = 0% 
• Volatility = 30% 
• Time to maturity = 1 year 
• Number of steps = 250 
• Style = European 
• Payout type = Plain vanilla 
• EMM probability = 50% 
For illustration, we assume the stock price, interest rate, and volatility are subsequently random. Note 

that the option valuation framework assumes volatility and interest rates are constant. Dynamic risk 
management often requires a balance between theoretical models and practical implementation. Thus, we 
assume options are valued based on geometric Brownian motion and the binomial framework while 
simultaneously assuming the desired quantitative analysis is based on professional judgment within the firm. 

We assume the following parameterizations: 
• Horizon = 1 month 
• Confidence level = 90% 
• Number of simulations = 2,000 
• Means (annualized, continuously compounded, percentage change) 

o Stock = 5% 
o Rate = 0% 
o Volatility = 0% 

• Standard deviations 
o Stock = 30% 
o Rate = 10% 
o Volatility = 40% 

• Correlations 
o Stock, Rate = –0.3 
o Rate, Volatility = 0.0 
o Stock, Volatility = –0.5 

In the tables presented below, XL denotes the low strike price ($90), X denotes the mid strike price 
($100), and XH denotes the high strike price ($110). Thus, LCXH denotes the long call with a high strike 
price. Note that these various strategies require different levels of dollar investment; hence, for ease of 
analysis we report only return VaR (distance from $0) as opposed to dollar VaR. 

Table 12.1.1 presents the results of the simulation based on the initial parameterization given above and 
allowing the correlation between stock returns and stock volatility to range from –0.75 to +0.75 incrementing 
by 0.25. Panel A presents European-style (ES) and Panel B presents American-style (AS). 
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Table 12.1.1 Return VaR Based on GBM BOVM Stock Return and Volatility Correlation  
Panel A: European-style           Panel B American-style 

   
 

There are several insights that can be drawn from the table. First, the Long Stock (LS) row illustrates that 
Monte Carlo simulation with 2,000 simulation results in variation of return value-at-risk (RVaR) at the 90% 
confidence level. RVaR ranges from 2.54% (ES, r = –0.75) to 2.88% (AS, r = 0.50). As the number of 
simulations increase, distribution parameters tend to stabilize, but the tails of the distribution are much 
slower to converge. We selected 90% confidence level as it converges faster than 95% or 99%. 

Second, focusing on the uncorrelated ES case (r = 0.0), RVaR increases with the strike price for Long 
Call (LC) ranging from 13.5% for the low strike price (XL) to 20.48% for the high strike price (XH). Recall 
the higher the strike price, the higher the implied leverage and hence, the higher the RVaR. We see the 
opposite pattern with puts. RVaR decreases with the strike price for Long Put (LP) ranging from 22.73% for 
the low strike price (XL) to 14.31% for the high strike price (XH). With puts, the higher the strike price, the 
lower the implied leverage (further in-the-money). Note that the patterns are similar for AS options but 
higher in magnitude for puts due to the additional early exercise premium. 

Third, the remaining option blended strategies have dramatically lower RVaRs when compared to long 
calls and puts. The primary reason is the dramatically higher investment required for the underlying long 
stock position that is unleveraged. 

Fourth, the same patterns noted above hold for covered call writing and protective put buying. In both 
cases, the further out-of-the-money, the less risk mitigation and hence the higher RVaR. As expected, the 
opposite pattern holds for leveraged calls and puts. 

Fifth, the correlation between stock returns and volatility does influence RVaR although it has no direct 
theoretical impact on the underlying instrument’s (stock, calls, and puts) value. For long calls, the RVaR 
increases with correlation and for long puts, the RVaR decreases with correlation. For covered call writing, 
the RVaR decreases with correlation and for protective put buying, the RVaR increases with correlation. For 
leveraged calls, the RVaR increases with correlation and for leveraged puts, the RVaR decreases with 
correlation. 

In summary, although perhaps not a focus when valuing options, correlation between the underlying 
instrument returns and volatility is an important determinant of various dynamic risk measures, such as 
RVaR. 

Table 12.1.2 presents the results of the simulation allowing the correlation between stock returns and 
interest rates to range from –0.75 to +0.75 incrementing by 0.25. Panel A presents European-style (ES) and 
Panel B presents American-style (AS). As expected, this correlation does not have a material impact on the 
RVaR estimates. 
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Table 12.1.2 Return VaR Based on GBM BOVM Stock Return and Interest Rate Correlation  
Panel A: European-style           Panel B American-style 

   
 

Table 12.1.3 presents the results of the simulation allowing the correlation between volatility and interest 
rates to range from –0.75 to +0.75 incrementing by 0.25. Panel A presents European-style (ES) and Panel B 
presents American-style (AS). As expected, this correlation does not have a material impact on the RVaR 
estimates. 

Table 12.1.3 Return VaR Based on GBM BOVM Volatility and Interest Rate Correlation  
Panel A: European-style           Panel B American-style 

   
 
 In summary, the ability to conduct RVaR analyses under different sets of simulation assumptions 
dramatically increases the types of analysis possible for risk managers. 
 
Quantitative finance materials 
The quantitative analysis is based on prior materials covered in Modules 5.2 and 8.1. For convenience, we 
provide selected key formulas here. 

The current value of an option is equal to the present value of the expected terminal payout as we assume 
European-style options where the underlying instrument is adjusted for a continuously compounded cash 
flow yield. 
 ,  
where the binomial summations are 

O0 = PV Eπ OT( )⎡⎣ ⎤⎦ = ιUSe
−δT Bin1,ιU − ιU Xe

−rT Bin2,ιU



 
© 2023 Robert Brooks. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. 

5 

 ,  

 ,  

 ,  

 ,  

where the terms are as defined before except 

 .  

Generically, the binomial option valuation model can be expressed as 

 ,  

where u and d are defined as 

  and  

 .  

 For American-style options, we must rely on backward recursion. Working backward through the lattice, 
the process to compute the option value based on the two subsequent nodes or at time i for j up moves, the 
binomial model value (denoted with B superscript) can be expressed as  
 ,  
The binomial model value, however, may be lower than the early exercise value (denoted with superscript X) 
that can be expressed as 
 ,  

where  denotes the vector of future dividend payments and  denotes its present value i periods 
from time 0. Recall the lower boundary condition (denoted with superscript L) is 

 .  

Thus, the fair value of the option at time i with j up moves is 
 .  
The initial option value is obtained through backward induction along the binomial lattice for the underlying 
instrument. 
 Thus, the initial value of the various options is determined based on the lattice given above. The 
simulation is run, and the options are subsequently revalued incorporating the new values for the stock, rate, 
and volatility as well as the passage of calendar time. Once all the simulations are run, then return VaR is 
estimated and reported in the tables above. 
 There are several alternative strategies that could also be pursued (but not here). Selected potential 
strategies to consider include: 

• Short stock (designated cash margin percentage (e.g., 100%), mS) 
• Short call (designated cash margin percentage of underlying stock (e.g., 10%), mc) 
• Short put (designated cash margin percentage of underlying stock (e.g., 10%), mp) 
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• Short CCW: Short stock, long call (synthetic leveraged long put: designated cash margin percentage 
of underlying stock (e.g., 10%), msCCW) 

• Short PPB: Short stock, short put (synthetic leveraged short put: designated cash margin percentage 
of underlying stock (e.g., 10%), msPPB) 

• LSC: Short stock, short call (leveraged short call) (synthetic leveraged short put: designated cash 
margin percentage of underlying stock (e.g., 10%), msLSC) 

• LLP: Short stock, long put (leveraged long put) (synthetic leveraged short put: designated cash 
margin percentage of underlying stock (e.g., 10%), msLLP) 

Further, one could add additional stocks to explore various cross-correlations. 
 
Summary 
As illustrated with these simple simulations, the ability to conduct RVaR analyses under different sets of 
simulation assumptions dramatically increases the types of analysis possible for risk managers. Risk 
managers should be constantly exploring various interactions as well as stress testing parameter assumptions. 
 
References 
See modules 5.2 and 8.1. 
 


