Chapter 1

Introduction

7
L&
= S

Book Design

= Modular (after chapter 2)

= Features of each module
= Central finance concepts
= Non-quantitative
= Case studies, examples, illustrations
= Quantitative finance materials
= Very technical materials
» Derivations and mathematical representations

= R commentaries (in separate file)

© Financial Risk Management, LLC

3

Introduction to Introduction

= Purpose: Not to provide state-of-the-art R
programming techniques (provide selected)

= Purpose: Not to provide state-of-the-art
quantitative finance techniques (provide selected
advanced materials illustrating cutting edge
analysis)

= Purpose: Provide as simple an approach as
possible to learn prototype implementation code
= Facilitate implementation of quantitative
finance ideas in R

© Financial Risk Management, LLC

5

Book Overview

= Introduction (this presentation)

= R Preliminaries (in appendix)

= Quantitative finance tools

= Instrument valuation

= Static risk management

= Dynamic market risk management

= Selected portfolio issues

© Financial Risk Management, LLC

Quants Must Have Humor!

Programming in R L7 B
may simply give you ” / 3

a more sophisticated \3
way to harm yourself. \
R plus wisdom is T)

extremely powerful.

Source: Lost.

Finance as a Social Science

= Both mechanism and agency important
= Quant infrastructure needs flexibility

= Manage rapid business expansion and contraction
= Manage changing quantitative solutions
= Interchangeable valuation and risk
management frameworks

= Continuous process

© Financial Risk Management, LLC 6

6

Case for Computer Language

= Conformist versus non-conformist

m Clear and crisp understanding of model
= Build versus buy

= Computer language (CL) or spreadsheets
u CL or symbolic languages

= Improved communication with internal
software developers ‘

= More efficient debugging g

= Decomposition T

© Financial Risk Management, LLC

Conformist vs. Non-Conformist

= Unique language
= Methods of expression
= Client presentations
= Valuation methodologies
= Data collected
=R expands means of expression

= Improved software tools speeds the process

© Financial Risk Management, LLC 8

7

Quants as Artists

© Financial Risk Management, LLC

8

Clear / Crisp Understanding

= Computer program — 99% correct is 100% wrong

= Books often provide only a 30,000-foot

perspective of financial models

= Example: Plain vanilla interest rate swap
= Quarterly, ACT/360 FLT; Semi, 30/360 FIX

= Payment frequency and day count have significant
value

© Financial Risk Management, LLC 10

Build Versus Buy

= Build

= Takes time and energy, risk errors but ...

= Fully understood by someone within firm

= Easy to modify as conditions change (social science)
= Buy

= Pay immodest fee, someone else liable, fast but ...

= No one internal understands model nuances

= Black box (only know inputs and interpretation of
outputs)

© Financial Risk Management, LLC

10

Spreadsheets

= Analysis only compliant with spreadsheet
framework (all other solutions not considered)

= Large, complex problems difficult in spreadsheets
= Slow and cumbersome

= CL: Decompose large, complex problems

= CL: Fast and flexible

11

,‘%ﬂ
| © Financial Risk Management, LLC 12
_

12

Symbolic Languages

= Not portable
= Rely on existence of symbolic language provider
= CL: very portable

= CL: rely only on existence of language, not
specific compiler

,ﬁﬂ
i 4 © Financial Risk Management, LLC 13
L .

Improved Communication

= Internal software developers do not understand
finance language

= Advanced quantitative finance applications often
are fraught with nuances (social science)

= Financial analyst can better communicate with
internal software developers if understand
computer language

e
b © Financial Risk Management, LLC 14
I .

13

14

More efficient debugging

= Quantitative finance models are complex (speed,
real time data, multidimensional, advanced math)

= “Bugs” are rampant ;

= Financial analyst is weli—suited to efficiently
debug

,‘%ﬂ
4 © Financial Risk Management, LLC 15
I .-

Decomposition

= Breaking down problem into smaller manageable
pieces

= One goal here is to help you develop skills to
achieve optimal level of decomposition

4
| & © Financial Risk Management, LLC 16
I ‘o

15

Summary

= Finance is a social science (thus, mechanism
and agency)

= Case made for learning a computer language

= Embrace perspective of being an artist
within a quantitative social science

,ﬁﬂ
4 © Financial Risk Management, LLC 17
o .

17

16

R Commentary
Why Learn the R Language?

= Jobs
= History of computer programming languages
= Low level language: machine level code, powerful
= High level language: easy to use
= mid-1950: FORTRAN (formula translation), high level
language
= C++: combines high level (easy to use) and low level
(powerful), fast, object-oriented
= R: Easy and can link with C++
= Rapid application development
4

> © Financial Risk Management, LLC 18
»

18

Learning R

= Autonomous versus heteronomous

= Autonomous: Freedom to act independently,
training materials are compiler independent

= Heteronomous: Subject to external standard,
training materials specific to one compiler

= Deliverables: Simple prototype programs

= Actual implementation requires exhaustive error-
trapping, real time data

’W = Goal: Deployable code
= -~ © Financial Risk Management, LLC 19
19

RStudio supports C, C++, Python, Shiny (html), SQL, and more.

Quarto Document
)L Pogam oK Open ik, Quarto Presentation.

Open Fi i New Column.

1 e il R Notebook.
a: v 2 RMarkdown,
3 1 Recent Files >
s S o
* Open Project iy oo A6
H Plumber APL.
7 pen Project in New Session.
3+ tocent Projects > crie
o Fi

Heador Fle
Markdown il
HIWL File
cssFile
Javascript File
03 Seript
Python script
Shell Script
saL serpt

RSweave

RHTML sS4k oazo202,128m
R Documentation.
W11 Progran Loyout/ Adata]
© Financial Risk Management, LLC 21

Figure 1.2. Illustration of RStudio

* O 1A Invodocion to R Appendix AR

Environment Window

ke Aprn 200, 424 7m
A3k Apr2s, 200,416 7M
. y 23,2000, 4330
tp o Information Window ..., 17, 2020, 1135 au
Type 20" o quit & oo

54K Decs, 2018, 7:54AM
Diorkspace Loaded fron /QFReposttory/Ch 1 Tntroduction/L.1 Progran Layout/
Roota]

,‘%ﬂ
| © Financial Risk Management, LLC 20
_

1.2 Heating Degree Days

= HDD: The number of degrees that a day's average
temperature is below 65 degrees Fahrenheit

g @
g %
5 R ° %%
g w 5°
. ¥
24 ° b

] oeg: -a)‘é:,j

P 2017 2018
' HDDFieSTDate2

| © Financial Risk Management, LLC 22
1

Appendix: Building a Repository

= Managing subdirectories for source code
= C:\QFRepository

= Managing files
= Modular development
= Each module independent

,‘W
| © Financial Risk Management, LLC 23
_—

23

22
Appendix: Coding Preferences
1) Indent two spaces (even for wrapped lines)
after each curly bracket ({), open ({) on
same line and close (}) on new line
2) Use blank lines very rarely. If you need a
space, include a comment line
3) Your name should be on the first line of
each file
24

Coding Preferences Continued

4) R function code should be separated from
other code
5) Naming conventions adopted here

a. Names of variables: lower case or both upper
and lower case, err on longer name

b. Names of functions: begin with upper case for
each word

© Financial Risk Management, LLC 25

Example Code: Name on Top

1 # Robert Brooks
2 # 5.4 GBMOWM Test.R

3 # Illustrating functions in R (function definitions in separate file)
4 # rmarkdown: :render("5.4 GBMOVM Test.R", "word_document™)

5 rm(list = 1sQ)) # Take out the Environment "trash"

6 cat("™\e14") # Clear Console, making error checking easier.

7 while (!is.null(dev.list()))dev.off() # Clear old plots

8 par(family = 'Times New Roman') # Globally set fonts for graphs

9 # Generic test inputs

10 inputStockPrice - 100.0

11 inputStrikePrice - 100.0

12 inputInterestRate = 5.0 # In percent

© Financial Risk Management, LLC 26

Indent, No Extra Lines

80 PutTimeValue <- c(1:NumberOfObservations)
81 for(i in 1:Number0fObservations){

82 StockPrice[i] <- as.double(LowerBound + (i-1)*StepSize)
83 GBMInputDataSStockPrice = StockPrice[i]

84 GBMInputDatasType = 1

85 Calll [1] <~ OptionL GBMInputData)
86 CallUpp [1] <~ OptionUpp GBMInputData)
87 CallValue[i] <- GBMOptionValue(GBMInputData)

88 CallTimeValue[i] <- CallValue[i] - CalllowerBound[i]
89 GBMInputDatasType - -1

90 PutLowerBound[i] <~ OptionLowerBound(GBMInputData)
91 PutUpperBound[i] <- OptionUpperBound(GBMInputData)
92 PutValue[i] <- GBMOptionValue(GBMInputData)

93 PutTimeValue[i] <- PutValue[i] - PutLowerBound[i]

© Financial Risk Management, LLC 27

Functions Separated

@] 5.4 GBMOVM Test.R ©'| GBMOVM Functions.R
E Source onSave = O/ ~ SRun | o9 P Sou
20 #
21 # Functions for GBMOVM-related calculations

2 #
23~ PV1 - function(Maturity, Rate){

24 return(exp(-(Rate/100.0) * Maturity))

25+ }

26 #d - functions used in GBMOVM

27 # with: Evaluates R expressions based on a set of data (B here)
28~ d1 - function(B){

29+ with(B, {

30 Num = (((InterestRate - DividendYield) / 100) + ((Volatility/100)2)/2) *
31 TimeToMaturity
32 Num = log(StockPrice/StrikePrice) + Num
33 Den = (Volatility/100)*sqrt(TimeToMaturity)
34 returnC Num/Den)
35+ B
36}
‘_‘ I © Financial Risk Management, LLC 28

